Skip to main content

Self-Adaptive Mutation in ZCS Controllers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1803))

Abstract

The use and benefits of self-adaptive mutation operators are well-known within evolutionary computing. In this paper we examine the use of self-adaptive mutation in Michigan-style Classifier Systems with the aim of improving their performance as controllers for autonomous mobile robots. Initially, we implement the operator in the ZCS classifier and examine its performance in two “animat” environments. It is shown that, although no significant increase in performance is seen over results presented in the literature using a fixed rate of mutation, the operator adapts to approximately this rate regardless of the initial range.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angeline, P.J., Fogel, D.B., Fogel, L.J. (1996) A Comparison of Self-Adaptation Methods for Finite State Machines in a Dynamic Environment. In L.J. Fogel, P.J. Angeline, & T. Bäck (eds.) Evolutionary Programming V, MIT Press, pp. 441–449.

    Google Scholar 

  • Bäck, T. (1992) Self-Adaptation in Genetic Algorithms. In F.J. Varela & P. Bourgine (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, MIT Press, pp 263–271.

    Google Scholar 

  • Cliff, D. & Bullock, S. (1993) Adding ‘Foveal Vision’ to Wilson’s Animat. Adaptive Behavior 2(1):47–70.

    Google Scholar 

  • Cliff, D. & Ross, S. (1995) Adding Temporary Memory to ZCS. Adaptive Behavior 3(2): 101–150.

    Article  Google Scholar 

  • Donnart, J-Y. & Meyer, J-A. (1994) Spatial Exploration, Map Learning, and Self-Positioning with MonaLysa. In P. Maes, M. Mataric, J-A. Meyer, J. Pollack & S.W. Wilson (eds.) From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behaviour, MIT Press, pp 204–213.

    Google Scholar 

  • Fogel, D.B. (1992) Evolving Artificial Intelligence. PhD dissertation, University of California.

    Google Scholar 

  • Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press.

    Google Scholar 

  • Holland, J.H., Holyoak, K.J., Nisbett, R.E. & Thagard, P.R. (1986) Induction: Processes of Inference, Learning and Discovery. MIT Press.

    Google Scholar 

  • Koza, J.R. (1991) Genetic Programming. MIT Press.

    Google Scholar 

  • Lanzi, P-L., Stolzmann, W. & Wilson, S.W. (eds.) (2000) Proceedings of the Second International Workshop on Learning Classifier Systems, Springer-Verlag.

    Google Scholar 

  • Rechenberg, I. (1973) Evolutionsstrategie; Optimierung technischer Systeme nach Prinzipen der biologischen Evolution. Frommann-Holzboog Verlag.

    Google Scholar 

  • Riolo, R. (1991) Lookahead Planning and Latent Learning in a Classifier System. In J-A. Meyer & S.W. Wilson (eds.) From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behaviour, MIT Press, pp316–326.

    Google Scholar 

  • Stolzmann, W. (1999) Latent Learning in Khepra Robots with Anticipatory Classifier Systems. In A.S. Wu (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference Workshop Program, Morgan Kauffman, pp290–297.

    Google Scholar 

  • Tomlinson, A. & Bull, L. (1998) A Corporate Classifier System. In A.E. Eiben, T. Bäck, M. Schoenauer & H-P. Schwefel (eds.) Parallel Problem Solving from Nature-PPSN V, Springer, pp. 550–559.

    Google Scholar 

  • Watkins, C. (1989) Learning from Delayed Rewards. PhD dissertation, University of Cambridge.

    Google Scholar 

  • Wilson, S.W. (1985) Knowledge Growth in an Artificial Animal. In J.J. Grefenstette (ed.) Proceedings of the First International Conference on Genetic Algorithms and their Applications, Lawrence Erlbaum Associates, pp 16–23.

    Google Scholar 

  • Wilson, S.W. (1987) Classifier Systems and the Animat Problem. Machine Learning 2:199–228.

    Google Scholar 

  • Wilson, S.W. (1994) ZCS: A Zeroth-level Classifier System. Evolutionary Computation 2(1):1–18.

    Article  Google Scholar 

  • Wilson, S.W. (1995) Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2):149–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bull, L., Hurst, J. (2000). Self-Adaptive Mutation in ZCS Controllers. In: Cagnoni, S. (eds) Real-World Applications of Evolutionary Computing. EvoWorkshops 2000. Lecture Notes in Computer Science, vol 1803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45561-2_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-45561-2_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67353-8

  • Online ISBN: 978-3-540-45561-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics