Advertisement

Magnetoconductance in Chaotic Quantum Billiards

  • E. Louis
  • J. A. Vergés
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)

Abstract

Magnetotransport through quantum chaotic billiards is investigated by means of new model which incorporates chaoticity by introducing Anderson disorder on a number of sites (either at the surface or within the bulk) proportional to the linear size of the system L. In particular weak localization effects and the selfsimilarity of magnetoconductance fluctuations are studied. The results indicate that the controlling parameter in both phenomena is W/L, where W is the leads width.

Keywords

Fractal Dimension Linear Size Random Matrix Theory Weak Localization Opposite Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, A.M., Baranger, H.U., Pfeiffer, L.N., & West, K.W. (1994): Phys. Rev. Lett. 73, 2111CrossRefGoogle Scholar
  2. Cuevas, E., Louis, E., amp; Vergés, J.A. (1996): Phys. Rev. Lett. 77, 1970CrossRefGoogle Scholar
  3. Datta, S. (1995): Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge)Google Scholar
  4. Efetov, K. (1997): Supersymmetry in disorder and chaos (Cambridge University Press, Cambridge)Google Scholar
  5. Guhr, T.,. Müller-Groeling, A., & Weidenmüller, H.A. (1998): Phys. Rept. 299, 189CrossRefGoogle Scholar
  6. Ketzmerick, R. (1996): Phys. Rev. B 54, 10841Google Scholar
  7. Louis, E., Cuevas, E., Vergés, J.A. & Ortuño, M. (1997): Phys. Rev. B 56, 2120Google Scholar
  8. Marcus, C.M., Rimberg, A.J., Westervelt, R.M., Hopkins, P.F., & Gossard, A.C. (1992): Phys. Rev. Lett. 69, 506CrossRefGoogle Scholar
  9. Taylor, R.P. et al. (1997): Phys. Rev. Lett. 78, 1952CrossRefGoogle Scholar
  10. Sachrajda, A.S., Ketzmerick, R., Gould, C., Feng, Y., Kelly, P.J., Delage, A. & Wasilewski, Z. (1998): Phys. Rev. Lett. 80, 1948CrossRefGoogle Scholar
  11. Vergés, J.A. (1999): Comput. Phys. Commun. 118, 71CrossRefGoogle Scholar
  12. Vergés, J.A., Cuevas, E., Ortuño, M. Louis, E. (1998): Phys. Rev. B 58, R10143Google Scholar
  13. Vergés, J.A. & Louis, E. (1999): Phys. Rev. B 59, R3803Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • E. Louis
    • 1
  • J. A. Vergés
    • 2
  1. 1.Departamento de Física AplicadaUniversidad de AlicanteAlicanteSpain
  2. 2.Instituto de Ciencia de Materiales de MadridConsejo Superior de Investigaciones CientíficasCantoblancoMadridSpain

Personalised recommendations