Advertisement

Quantum Chaos Effects in Mechanical Wave Systems

  • Stephen W. Teitsworth
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)

Abstract

Quantum chaos effects, such as wavefunction scarring and Wigner- Dyson level-spacings distributions, have been observed in a number of analogue experimental systems, including microwave cavities, water surface waves, acoustic cavities, and mechanical elastic wave systems. We describe experiments on two such mechanical wave systems, 1) elastic membranes - i.e., drumheads - which obey an underlying Helmholtz equation, and 2) thin metal plates undergoing transverse vibrations which are described by a biharmonic wave equation. For the elastic membrane system we have extensively studied the spectral statistics of both circular and stadium-shaped geometries with clamped boundary conditions; limited information about the spatial structure of high order eigenmodes has also been obtained. In plate experiments, a thin stadium-shaped plate is vibrated mechanically subject to fully clamped boundaries. High order eigenmodes are imaged using time-averaged holographic interferometry and show clear evidence of scarring. Adopting an eikonal form of the solution along classical trajectories of the stadium billiard and treating the problem exactly at the boundaries, we have obtained and experimentally verified novel quantization conditions for the observed modes.

Keywords

Periodic Orbit Helmholtz Equation Random Matrix Theory Clamp Boundary Condition Vibrational Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H. et al. (1996): Phys. Rev. E 54, 2303Google Scholar
  2. Berry M. V. (1987): Proc. R. Soc. London, Ser. A 413, 183CrossRefGoogle Scholar
  3. Blümel R., Davidson I. H., Reinhardt W. P., Lin H., Sharnoff M. (1992): Phys. Rev. A 45, 2641Google Scholar
  4. Bogomolny E., Hughes E. (1998): Phys. Rev. E 57, 5404Google Scholar
  5. Chen L. H. (1996): Undergraduate thesis, Duke UniversityGoogle Scholar
  6. Chinnery P. A., Humphrey V. F. (1996): Phys. Rev. E 53, 272Google Scholar
  7. Deland D., Sornette D., Weaver R. (1994): J. Acoust. Soc. Am. 96, 1873CrossRefGoogle Scholar
  8. Deus S., Koch P., Sirko L. (1995): Phys. Rev. E 52, 1146Google Scholar
  9. Dörr U., Stöckmann H.-J., Barth M., Kuhl U. (1998): Phys. Rev. Lett. 75, 1030CrossRefGoogle Scholar
  10. Ellegard C., Guhr T., Lindemann K., Lorensen H. Q., Nygaard J., Oxborrow M. (1995): Phys. Rev. Lett. 75, 1546CrossRefGoogle Scholar
  11. Gräf H.-D. et al. (1992): Phys. Rev. Lett. 69, 1296CrossRefGoogle Scholar
  12. Heller E. J. (1984): Phys. Rev. Lett. 53, 1515CrossRefGoogle Scholar
  13. Landau L. D., Lifshitz E. M. (1970): Theory of Elasticity, 2nd ed. (Pergammon, London)Google Scholar
  14. Legrand O., Schmitt C., Sornette D. (1992): Europhys. Lett. 18, 101CrossRefGoogle Scholar
  15. Sridhar S. (1991): Phys. Rev. Lett. 67, 785CrossRefGoogle Scholar
  16. Starobin A. J. (1997): Undergraduate thesis, Duke UniversityGoogle Scholar
  17. Starobin A. J., Teitsworth S. W. (1999): submitted for publication in Phys. Rev. E Google Scholar
  18. Stein J., Stöckmann H. J. (1992): Phys. Rev. Lett. 68, 2867CrossRefGoogle Scholar
  19. Stöckmann H. J., Stein J. (1990): Phys. Rev. Lett. 64, 2215CrossRefGoogle Scholar
  20. Thurstone C. (1992): Undergraduate thesis, Duke UniversityGoogle Scholar
  21. Vest C. M. (1979): Holographic interferometry (Wiley, New York)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Stephen W. Teitsworth
    • 1
  1. 1.Department of PhysicsDuke UniversityDurhamUSA

Personalised recommendations