Skip to main content

Electron Patterns Under Bistable Electro-Optical Absorption in Quantum Well Structures

  • Conference paper
  • First Online:
  • 607 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 547))

Abstract

Heterostructures with electrically biased quantum wells show bistable absorption in both, hybrid electro-optical devices (SEED’s) [1] and all-optical devices (wireless SEED’s [2], and multiple quantum well structures [3],[4]). We report a new phenomenon of formation of transversal electron patterns under bistable electro-optical absorption in wireless single and multiple quantum well heterostructures. The patterns consist of regions with different densities of two-dimensional photogenerated electron-hole plasma. This phenomenon results in patterning of optical absorption and light transmission.

We have formulated and analyzed a model addressing these self-sustained patterns which includes: self-consistent calculations of the wave functions and subband energies of photoexcited electrons and holes in a strongly biased quantum well, nonlinear interband light absorption, configuration of the electrostatic potential, its screening and the lateral motion of the bidimensional electron-hole plasma. The transversal characteristic length scale of the patterns is of the order of the ambipolar diffusion length of the two-dimensional plasma, L D. For large transversal dimensions of the QW layer most of the patterns consist of wide plateaus with high (low) absorption and plasma density and relatively narrow domains with low (high) absorption and plasma density. There is a strong coupling between the vertical and transversal degrees of freedom of photoexcited carriers due to the electrostatic interaction. Transversal redistributions of the plasma induce complex configurations (two-, or three-dimensional) of the electrostatic potential. For a finite transversal dimensions of the QW layer the patterns are strongly affected by the boundary conditions at the edges of the layer. Depending on the heterostructure design there are either electrically charged, or quasineutral patterns (for the latter case the electron concentration, n, is almost equal to the hole concentration, p). If the distance, d c, between the QW and the electrodes (heavy doped regions of the structure to which the bias is applied) is considerably greater than L D, the patterns are quasineutral. In the opposite case, the patterns are charged. For all cases patterning of transmitted light is calculated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. A. B. Miller et al., Appl. Phys. Lett. 45, 13 (1984). A. L. Levin, IEEE J. of Quant. Electron. 29, 655 (1993).

    Article  CAS  Google Scholar 

  2. J. Couturier et al., Appl. Phys. Lett. 64(6), 742 (1994).

    Article  CAS  Google Scholar 

  3. R. Merlin et al., Surf. Science 41, 9953 (1990).

    Google Scholar 

  4. V. A. Kochelap, L. L. Bonilla, V. N. Sokolov and C. A. Velasco, Phys. Stat. Solidi (b) 204, 559 (1997). L. L. Bonilla, V. A. Kochelap and C. A. Velasco, J. Phys. C 31, L539 (1998). C. A. Velasco, L. L. Bonilla, V. A. Kochelap and V. N. Sokolov, Microelectronic Eng. 43-44, 153 (1998). V. A. Kochelap, L. L. Bonilla and C. A. Velasco, Semiconductor Physics, Quantum Electronics and Optoelectronics 1(1), 50 (1998). V. A. Kochelap, L. L. Bonilla and C. A. Velasco, J. Opt. B: Quantum Semiclass. Opt. 1, 84 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Velasco, C.A., Bonilla, L.L., Kochelap, V.A., Sokolov, V.N. (2000). Electron Patterns Under Bistable Electro-Optical Absorption in Quantum Well Structures. In: Reguera, D., Rubí, J.M., Platero, G., Bonilla, L.L. (eds) Statistical and Dynamical Aspects of Mesoscopic Systems. Lecture Notes in Physics, vol 547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45557-4_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-45557-4_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67478-8

  • Online ISBN: 978-3-540-45557-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics