Interpolative Method for Transport Properties of Quantum Dots in the Kondo Regime

  • A. Levy Yeyati
  • A. Martín-Rodero
  • F. Flores
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)


We present an interpolative method for describing coherent transport through an interacting quantum dot. The idea of the method is to construct an approximate electron self-energy which becomes exact both in the limits of weak and strong coupling to the leads. The validity of the approximation is first checked for the case of a single (spin-degenerate) dot level. A generalization to the multilevel case is then discussed. We present results both for the density of states and the temperature dependent linear conductance showing the transition from the Kondo to the Coulomb blockade regime.


Interpolative Method Gate Voltage Anderson Model Level Charge Linear Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Goldhaber-Gordon et al., Nature 391, 156 (1998) and D. Goldhaber-Gordon et al. Phys. Rev. Lett. 81, 5225 (1998).Google Scholar
  2. [2]
    S.M. Cronenwett et al, Science 281, 540 (1998).CrossRefGoogle Scholar
  3. [3]
    T.K. Ng and P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988); L.I. Glazman and M.E. Raikh, JETP Lett. 47, 452 (1988); S. Hershfield, J.H. Davis and J.W. Wilkins, Phys. Rev. Lett. 67, 3720 (1991); Y. Meir, N.S. Wingreen and P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993).Google Scholar
  4. [4]
    A. Levy Yeyati, A. Martín-Rodero and F. Flores, Phys. Rev. Lett. 71, 2991 (1993).CrossRefGoogle Scholar
  5. [5]
    A. Martín-Rodero et al., Solid State Commun. 44, 911 (1982).CrossRefGoogle Scholar
  6. [6]
    A. Martín-Rodero et al., Phys. Rev. B 33, 1814 (1986).Google Scholar
  7. [7]
    H. Kajueter and G. Kotliar, Phys. Rev. Lett. 77, 131 (1996); M. Potthoff, T. Wegner and V. Nolting, Phys. Rev. B 55, 16132 (1997).CrossRefGoogle Scholar
  8. [8]
    A.I. Lichtenstein and M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998).Google Scholar
  9. [9]
    R. Lopez et al. Phys. Rev. Lett. 81, 4688 (1998).CrossRefGoogle Scholar
  10. [10]
    A. Levy Yeyati, F. Flores and A. Martín-Rodero, Phys. Rev. Lett. 83, 600 (1999).CrossRefGoogle Scholar
  11. [11]
    B. Bell and A. Madhukar, Phys. rev. B 14, 4281 (1976).Google Scholar
  12. [12]
    J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963).Google Scholar
  13. [13]
    J.M. Luttinger and J.C. Ward, Phys. Rev. 118, 1417 (1960).CrossRefGoogle Scholar
  14. [14]
    D.C. Langreth, Phys. Rev. 150, 516 (1966).CrossRefGoogle Scholar
  15. [15]
    Y. Meir and N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).CrossRefGoogle Scholar
  16. [16]
    J. Schmid, J. Weis, K. Ederl and K. v. Klitzing, Physica B 256–258, 182 (1998).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • A. Levy Yeyati
    • 1
  • A. Martín-Rodero
    • 1
  • F. Flores
    • 1
  1. 1.Departamento de Física Teórica de la Materia Condensada CVUniversidad Autonoma de MadridMadridSpain

Personalised recommendations