Advertisement

Novel 0D Devices: Carbon-Nanotube Quantum Dots

  • L. Chico
  • M. P. López Sancho
  • M. C. Muñoz
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)

Abstract

We have designed a carbon-based quantum dot and a quantum barrier by introducing pentagon-heptagon defects in a carbon nanotube, in a way that is equivalent to combine two carbon-nanotube metal-semiconductor junctions.The quantum dot system has completely confined electronic states, so it behaves as an ideal 0-dimensional (0D)device, presenting well-separated discrete levels. By varying the distance between pentagon-heptagon pairs, the number and characteristics of the discrete levels can be modified.The inclusion of topological defects in a nanotube can also produce a quantum barrier. The study of the properties of such structure throws light onto the complex nature of topological barriers.

Keywords

Topological Defect Discrete Level Pair Defect Metallic Tube Quantum Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blase X., Benedict L.X., Shirley E.L.& Louie S.G.M.L.(1994): Phys.Rev.Lett.72,1878Google Scholar
  2. Bockrath M., Cobden D.H., McEuen P., Chopra N.G., Zettl A., Thess A.,& Smalley R.E.(1997):Science 275,100CrossRefGoogle Scholar
  3. Chico L., Crespi V., Benedict L.X., Louie S.G.,& Cohen M.L.(1996):Phys.Rev.Lett.76,971CrossRefGoogle Scholar
  4. Chico L., López Sancho, M.P, & Muñoz M.C.(1998):Phys.Rev.Lett.81,1278CrossRefGoogle Scholar
  5. Collins P.G., Zettl A., Bando H., Thess A.,& Smalley R.E.(1997): Nature 386, 474CrossRefGoogle Scholar
  6. Ebbesen, T.W.(1996)Physics Today,26Google Scholar
  7. Fisher, D.S. and Lee, P.A.(1981):Phys.Rev.B 23,6851Google Scholar
  8. García-Moliner F.and Velasco V.R.(1992):Theory of Single and Multiple Interfaces,World Scientific,SingaporeGoogle Scholar
  9. Hamada N., Sawada S.,& Oshiyama A.(1992):Phys.Rev.Lett.68,1579CrossRefGoogle Scholar
  10. Iijima, S.(1991): Nature 354, 56Google Scholar
  11. Lambin P.et al.(1995):Chem.Phys.Lett.245,85CrossRefGoogle Scholar
  12. López Sancho M.P., López Sancho J.M., and Rubio J.(1984):J.Phys.F:Metal Phys.14,1205CrossRefGoogle Scholar
  13. Mintmire, J.W., Dunlap, B.I., & White, C.T.(1992):Phys.Rev.Lett.68,631CrossRefGoogle Scholar
  14. Saito, R, Dresselhaus, G.D., & Dresselhaus M.S.(1996):Phys.Rev.B 53,2044Google Scholar
  15. Tamura R., & Tsukada M.(1994):Phys.Rev.B 49,7697Google Scholar
  16. Tans, S.J.et al.(1997):Nature386, 474CrossRefGoogle Scholar
  17. Thess, A.et al.(1996):Science 273,583CrossRefGoogle Scholar
  18. Wildöer, J.W.G.et al.(1998):Nature 391,59CrossRefGoogle Scholar
  19. Odom, T.W.et al.(1998):Nature 391,62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • L. Chico
    • 1
    • 2
  • M. P. López Sancho
    • 2
  • M. C. Muñoz
    • 2
  1. 1.Departamento de Fśica Aplicada, Facultad de Ciencias del Medio AmbienteUniversidad de Castilla-La ManchaToledoSpain
  2. 2.Instituto de Ciencia de Materiales de MadridConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations