Advertisement

Two Interacting articles in a Two-Dimensional Random Potential

  • M. Ortuño
  • E. Cuevas
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)

Abstract

The localization properties of two interacting particles in a two dimensional random potential are calculated by three different numerical procedures. These procedures focus on the nearest level spacing distribution, the inverse participation ratio of the states, and the two-particle decay length in long bars, respectively, and incorporate scaling techniques for the extrapolation of the data. Both short-range and long-range Coulomb interactions are considered. We always find a localized to extended states transition independently of the particle statistics and of the type of interaction. For low disorders, the interaction strongly mixes most unperturbed states, even those corresponding to electrons far apart.

Keywords

Localization Length Unperturbed State Disorder Strength Critical Disorder Disorder Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altshuler B.L.and Shklovskii B.I.(1986):Zh.Eksp.Teor.Fiz.91, 220 [Sov.Phys. JETP 64,127 (1986)]Google Scholar
  2. Castellani C., Di Castro C. and Lee P.A.(1998): Phys.Rev. B 57, R9381Google Scholar
  3. Cuevas E.(1999): Phys.Rev.Lett. 83,140Google Scholar
  4. Cuevas E.and Ortuño M.(1999):Ann.Phys.(Leipzig),in pressGoogle Scholar
  5. Cullum J.K.and Willoughby R.A.(1985):Lanczos Algorithms for Large Symmetric Eigenvalue Computations (Birkhauser, Basel)Google Scholar
  6. Finkelstein A.M.(1983): Zh.Eksp.Teor.Fiz.84,168 [Sov.Phys.JETP 57,97 (1983)]Google Scholar
  7. Kravchenko S.V., Simonian D., Sarachik M.P., Mason W.and Furneaux J.E.(1996): Phys.Rev.Lett.77, 4938CrossRefGoogle Scholar
  8. Lee P.A.and Ramakrishnan T.V.(1985):Rev.Mod.Phys.57, 287CrossRefGoogle Scholar
  9. MacKinnon A.and Kramer B.(1983):Z.Phys.B 53,1CrossRefGoogle Scholar
  10. Ortuño M.and Cuevas E.(1999):Europhys.Lett.46, 224CrossRefGoogle Scholar
  11. Popović D., Fowler A.B. and Washburn S.(1997): Phys.Rev.Lett.79,1543CrossRefGoogle Scholar
  12. Römer R.A., Leadbeater M.and Schreiber M.(1999):Ann.Phys.(Leipzig),in pressGoogle Scholar
  13. Schweitzer L.and Zharekeshev Kh.(1995):J.Phys.:Con.Mat.7, L377CrossRefGoogle Scholar
  14. Shepelyansky D.L.(1999):cond-mat/9902246Google Scholar
  15. Shklovskii B.I., Shapiro B., Sears B.R., Lambrianides P.and Shore H.B.(1993): Phys.Rev. B 47, 11487Google Scholar
  16. Song P.H. and von Oppen F.(1999): Phys.Rev. B 59,46Google Scholar
  17. von Oppen F., Wettig T.,and Müller J.(1996): Phys.Rev.Lett.76, 491CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • M. Ortuño
    • 1
  • E. Cuevas
    • 1
  1. 1.Departamento de FśicaUniversidad de MurciaMurciaSpain

Personalised recommendations