Advertisement

Kondo Effect in Quantum Dots

  • L. I. Glazman
  • F. W. J. Hekking
  • A. I. Larkin
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)

Abstract

Kondo effect in a quantum dot is discussed. In the standard Coulomb blockade setting, tunneling between the dot and leads is weak, the number of electrons in the dot is well-defined and discrete; Kondo effect may be considered in the framework of the conventional one-level Anderson impurity model. It turns out however, that the Kondo temperature TK in the case of weak tunneling is extremely low. In the opposite case of almost reflectionless single-mode junctions connecting the dot to the leads, the average charge of the dot is not discrete. Surprisingly, its spin may remain quantized: s = 1/2 or s = 0, depending (periodically) on the gate voltage. Such a “spin-charge separation” occurs because, unlike Anderson impurity, quantum dot carries a broad-band, dense spectrum of discrete levels. In the doublet state, Kondo effect with a significantly enhanced TK develops.

Keywords

Gate Voltage Spin Mode Magnetic Impurity Discrete Level Luttinger Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleiner, I.L. and Glazman L.I. (1998): Phys. Rev. B 57, 9608.Google Scholar
  2. Anderson, P.W. (1961): Phys. Rev. 124, 41.CrossRefGoogle Scholar
  3. Anderson, P.W. (1966): Phys. Rev. Lett. 17, 95.CrossRefGoogle Scholar
  4. Appelbaum, J. (1966): Phys. Rev. Lett. 17, 91.CrossRefGoogle Scholar
  5. Averin, D.V. and Nazarov, Yu.N. (1990): Phys. Rev. Lett. 65, 2446.CrossRefGoogle Scholar
  6. Costi, T.A., Hewson, A.C. and Zlatić, V. (1994): J. Phys. Condens. Matter 6, 2519.CrossRefGoogle Scholar
  7. Cronenwett, S.M., Oosterkamp, T.H., and Kouwenhoven, L.P. (1998): Science 281, 540.CrossRefGoogle Scholar
  8. Furusaki, A. and Matveev, K.A. (1995): Phys. Rev. B 52, 16676.Google Scholar
  9. Glazman, L.I. and Raikh, M.E. (1988): JETP Lett. 47, 452.Google Scholar
  10. Glazman, L.I. and Matveev, K.A. (1990): Sov. Phys. JETP 71, 1031.Google Scholar
  11. Goldhaber-Gordon, D. et al. (1998): Nature (London) 391, 156; Phys. Rev. Lett. 81, 5225.Google Scholar
  12. Haldane, F.D.M. (1979): Phys. Rev. Lett. 40, 416.CrossRefGoogle Scholar
  13. Haldane, F.D.M. (1981): J. Phys. C: Solid State Phys. 14, 2585.CrossRefGoogle Scholar
  14. Kane, C.L. and Fisher, M.P.A. (1992): Phys. Rev. B 46, 15233.Google Scholar
  15. Kondo, J. (1964): Prog. Theor. Phys. 32, 37.CrossRefGoogle Scholar
  16. Matveev, K.A. (1991): Sov. Phys. JETP 72, 892.Google Scholar
  17. Matveev, K.A. (1995): Phys. Rev. B 51, 1743.Google Scholar
  18. Ng, T.K. and Lee, P.A. (1988): Phys. Rev. Lett. 61, 1768.CrossRefGoogle Scholar
  19. Nozières, P. (1974): J. Low Temp. Phys. 17, 31.CrossRefGoogle Scholar
  20. Rowell, J.M. (1969): in Tunneling Phenomena in Solids, edited by E. Burstein and S. Lundquist (Plenum, New York, 1969), p. 385.Google Scholar
  21. Schmid, J. (1998): Physica B 256–258, 182.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • L. I. Glazman
    • 1
  • F. W. J. Hekking
    • 2
  • A. I. Larkin
    • 1
    • 3
  1. 1.Theoretical Physics InstituteUniversity of MinnesotaMinneapolisUSA
  2. 2.Theoretische Physik IIIRuhr-Universität BochumBochumGermany
  3. 3.L.D. Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations