Numerical-Scaling Study of the Statistics of Energy Levels at the Anderson Transition

  • I. Kh. Zharekeshev
  • B. Kramer
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)


The statistical properties of the energy spectra of the Anderson Hamiltonian for random systems are numerically investigated near the disorder-induced metal-insulator transition. The level spacing distribution, the level density correlation function and the spectral form-factor are shown to be size-invariant at the critical point. They exhibit a crossover from the critical orthogonal to the critical unitary ensembles, which is controlled by the magnetic flux. One-parameter finite size scaling of the level statistics is used to detect with high precision the critical parameters: the critical exponent and the disorder dependence of the correlation length.


Random Matrix Theory Boundary Condition Spectral Correlation Critical Disorder Anderson Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ramakrishnan, Phys. Rev.Lett.42, 673 (1979).CrossRefGoogle Scholar
  2. O. Agam, B.L. Altshuler, and A.V. Andreev, Phys.Rev.Lett.75, 4389 (1995).CrossRefGoogle Scholar
  3. B.L. Altshuler and B.I. Shklovskii, Zh.Eksp.Teor.Fiz.91, 220(1986).Google Scholar
  4. B.L. Altshuler, I. Kh.Zharekeshev, S.A. Kotochigova, and B.I. Shklovskii, Zh.Eksp.Teor.Fiz.94, 343 (1988).Google Scholar
  5. A.V. Andreev and B.L. Altshuler,Phys.Rev.Lett.75, 902 (1995).CrossRefGoogle Scholar
  6. P.W. Anderson, Phys.Rev.109,1492 (1958).CrossRefGoogle Scholar
  7. A.G. Aronov, V.E. Kravstov, and I.V. Lerner, Phys.Rev.Lett.74, 1174 (1995).CrossRefGoogle Scholar
  8. M. Batsch, L. Schweitzer, I. Kh.Zharekeshev, and B. Kramer,Phys.Rev.Lett.77,1552 (1996).CrossRefGoogle Scholar
  9. D. Braun and G. Montambaux, Phys.Rev.B 52,13903 (1995).CrossRefGoogle Scholar
  10. D. Braun, G. Montambaux, and M. Pascaud, Phys.Rev.Lett. 81, 1062 (1998).CrossRefGoogle Scholar
  11. F.J. Dyson, J.Math.Phys.3, 140(1962); 3,1199 (1962).CrossRefGoogle Scholar
  12. K.B. Efetov, Adv.Phys.32,53 (1983).CrossRefGoogle Scholar
  13. K.B. Efetov, Sypersimmetry in disorder and chaos,(Cambridge University Press, 1997).Google Scholar
  14. S.N. Evangelou, Phys.Rev.B 49,16805 (1994).CrossRefGoogle Scholar
  15. M. Feingold, Y. Avishai and R. Berkovitz, Phys.Rev.B 52, 8400 (1995).CrossRefGoogle Scholar
  16. T. Guhr, A. Müller-Groeling, and H.A. Weidenmüller, Phys.Rep.299,189 (1998).CrossRefGoogle Scholar
  17. E. Hofstetter and M. Schreiber, Phys.Rev.B 49, 14726 (1994).CrossRefGoogle Scholar
  18. M. Janssen, Phys.Rep.295,1 (1998).CrossRefGoogle Scholar
  19. T. Kawarabayashi, T. Ohtsuki, K. Slevin, Y. Ono, Phys.Rev.Lett.77, 3593 (1996).CrossRefGoogle Scholar
  20. B. Kramer and A. MacKinnon, Rep.Prog.Phys.56,1496 (1993).CrossRefGoogle Scholar
  21. V.E. Kravtsov and I.V. Lerner, Phys.Rev.Lett.74, 2563 (1995).CrossRefGoogle Scholar
  22. V.E. Kravtsov, I.V. Lerner, B.L. Altshuler, and A.G. Aronov,Phys.Rev.Lett.72, 888 (1994).CrossRefGoogle Scholar
  23. V.E. Kravtsov and A.D. Mirlin, Pis'ma Zh.Eksp.Teor.Fiz.60,645 (1994).Google Scholar
  24. P.A. Lee and T.V. Ramakrishnan, Rev.Mod.Phys.57, 287 (1985).CrossRefGoogle Scholar
  25. M.L. Mehta, Random Matrices (Academic Press, Boston,1991).Google Scholar
  26. G. Montambaux, Phys.Lett.A 233,430(1998).Google Scholar
  27. M. Schreiber and M. Ottomeier, J.Phys.:Condens.Matter 4, 1959 (1992).CrossRefGoogle Scholar
  28. L. Schweitzer and I. Kh.Zharekeshev, J.Phys.:Condens.Matter 7, L377 (1995).CrossRefGoogle Scholar
  29. L. Schweitzer and I. Kh.Zharekeshev, J.Phys.:Condens.Matter 9, L441 (1997).CrossRefGoogle Scholar
  30. B.I. Shklovskii, B. Shapiro, B.R. Sears, P. Lambrianides, and H.B. Shore, Phys.Rev.B 47,11487 (1993).CrossRefGoogle Scholar
  31. K. Slevin and T. Ohtsuki,Phys.Rev.Lett.78,4085 (1997).CrossRefGoogle Scholar
  32. D.J. Thouless, Phys.Rep.13 C,93 (1974).CrossRefGoogle Scholar
  33. A. Weymer and M. Janssen, Ann.Physik (Leipzig),7,159 (1998).Google Scholar
  34. E.P. Wigner, Proc.Cambridge Philos.Soc.47,790(1951).CrossRefGoogle Scholar
  35. I.Kh. Zharekeshev, M.Batsch, and B. Kramer,Europhys.Lett.34,587 (1996).CrossRefGoogle Scholar
  36. I.Kh. Zharekeshev and B. Kramer,Phys.Rev.B 51,17239 (1995).Google Scholar
  37. I.Kh. Zharekeshev and B. Kramer,Jpn.J.Appl.Phys.34,4361 (1995).CrossRefGoogle Scholar
  38. I.Kh. Zharekeshev and B. Kramer,Phys.Rev.Lett.79,717 (1997).CrossRefGoogle Scholar
  39. I.Kh. Zharekeshev and B. Kramer,Ann.Phys.(Leipzig)7,442 (1998).CrossRefGoogle Scholar
  40. I.Kh. Zharekeshev and B. Kramer,Computer Phys.Commun.121/122,502 (1999).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • I. Kh. Zharekeshev
    • 1
  • B. Kramer
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HamburgHamburg

Personalised recommendations