Advertisement

Current Self-Oscillations and Chaos in Semiconductor Superlattices

  • H. T. Grahn
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)

Abstract

Weakly coupled semiconductor superlattices represent a non-linear system, which exhibits tunable current self-oscillations and chaos. The non-linearity originates from resonant tunneling between two-dimensional subbands in adjacent wells. The current oscillations are due to a recycling motion of a charged monopole over several superlattice periods. The charged monopole appears, because the nonlinearity of the system in connection with a large carrier density results in the formation of electric-field domains in these systems. The monopole separates the different field regions. Current self-oscillations have been observed in doped and undoped, photoexcited superlattices up to frequencies of several GHz. A single period of the current oscillations contains additional spikes with a frequency more than one order of magnitude above the fundamental oscillation frequency. These spikes are a signature of the well-to-well hopping of the monopole. The fundamental oscillation frequency can be varied over more than two orders of magnitude by changing the applied voltage within a single sample. For different samples, a variation of the barrier width by a factor of three has resulted in a change of the fundamental oscillation frequency by more than three orders of magnitude. The frequency scales with the resonant coupling of the subbands in adjacent wells. In several samples, current self-oscillations have been observed up to room temperature. Recently, undoped superlattices have been used to investigate the carrier density dependence of the boundary between static and dynamic domain formation by varying the photoexcitation intensity. With increasing carrier density, the current oscillations disappear via a supercritical Hopf bifurcation, a subcritical Hopf bifurcation, and a homoclinic connection. The chaotic behavior of such a system, which was predicted through calculations within a simple drift-diffusion model, has also been investigated. The bifurcation diagram of the power spectra under application of an external ac voltage shows the well-known route to chaos via alternating windows of frequency locking and quasi-periodicity. Real-time current traces have been used to construct Poincaré sections, which support this interpretation. However, for other dc voltages, the route to chaos can become much more complex. Recently, the multi-fractal dimension of the chaotic attractors has been determined as a function of the dc voltage using the experimentally derived Poincaré sections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonilla L. L. (1995): in Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices, edited by F.-J. Niedernostheide (Springer-Verlag, Berlin), Chap. 1Google Scholar
  2. Bonilla L.L., Galán J., Cuesta J. A., Martínez F. C., & Molera J. M. (1994): Phys. Rev. B 50, 8644Google Scholar
  3. Bulashenko O. M., and Bonilla L. L. (1995): Phys. Rev. B 52, 7849Google Scholar
  4. Bulashenko O. M., García M. J., & Bonilla L. L. (1996): Phys. Rev. B 53, 10008Google Scholar
  5. Bulashenko O. M., Luo K. J., Grahn H. T., Ploog K. H., & Bonilla L. L. (1999): Phys. Rev. B 60, 5694Google Scholar
  6. Esaki L., and Tsu R. (1970): IBM J. Res. Develop. 14, 61CrossRefGoogle Scholar
  7. Grahn H. T. (1995): Semiconductor Superlattices (World Scientific, Singapore)Google Scholar
  8. Grahn H. T. (1998): in Hot Electrons in Semiconductors, Physics and Devices, edited by N. Balkan (Clarendon Press, Oxford), pp. 357–381Google Scholar
  9. Grahn H., Kastrup J., Ploog K., Bonilla L., Galán J., Kindelan M., & Moscoso M. (1995): Jpn. J. Appl. Phys. 34, 4526CrossRefGoogle Scholar
  10. Grahn H. T., Kastrup J., Klann R., Ploog K. H., & Asai H. (1996): in Proceed. of the 23rd International Conference on the Physics of Semiconductors, edited by M. Scheffler and R. Zimmermann (World Scientific, Singapore), p. 1671Google Scholar
  11. Hosoda M., Mimura H., Ohtani N., Tominaga K., Watanabe T., Fujiwara K., & Grahn H. T. (1996): Appl. Phys. Lett. 69, 500CrossRefGoogle Scholar
  12. Kantelhardt J. W., Grahn H. T., Ploog K. H., Moscoso M., Perales A., & Bonilla L. L. (1997): Phys. Status Solidi B 204, 500CrossRefGoogle Scholar
  13. Kastrup J., Klann R., Grahn H. T., Ploog K., Bonilla L. L., Galán J., Kindelan M., Moscoso M., & Merlin R. (1995): Phys. Rev. B 52, 13761Google Scholar
  14. Kastrup J., Hey R., Ploog K. H., Grahn H. T., Bonilla L. L., Kindelan M., Moscoso M., Wacker A., & Galán J. (1997): Phys. Rev. B 55, 2476Google Scholar
  15. Luo et al. 1998a Luo K. J., Grahn H. T., Ploog K. H., & Bonilla L. L. (1998): Phys. Rev. Lett. 81, 1290CrossRefGoogle Scholar
  16. Luo et al. 1998b Luo K. J., Grahn H. T., Teitsworth S. W., & Ploog K.H. (1998): Phys. Rev. B 58, 12613Google Scholar
  17. Luo K. J., Teitsworth S. W., Kostial H., Grahn H. T., & Ohtani N. (1999): Appl. Phys. Lett. 74, 3845CrossRefGoogle Scholar
  18. Moscoso M., Bonilla L. L., & Galán J. (1999): in Proceed. the 24th International Conference on the Physics of Semiconductors edited by D. Gershoni (World Scientific, Singapore), V-C-14 (0524.pdf)Google Scholar
  19. Ohtani, N., Hosoda, M., & Grahn H. T. (1997): Appl. Phys. Lett. 70, 375CrossRefGoogle Scholar
  20. Ohtani et al. (1998a) Ohtani N., Egami N., Fujiwara K., & Grahn H. T. (1998): Solid-State Electron. 42, 1509CrossRefGoogle Scholar
  21. Ohtani et al. (1998b) Ohtani N., Egami N., Grahn H. T., Ploog K. H., & Bonilla L. L. (1998): Phys. Rev. B 58, R7528Google Scholar
  22. Ohtani et al. (1998c) Ohtani N., Egami N., Grahn H. T., & Ploog K. H. (1998): Physica B 249–251, 878Google Scholar
  23. Patra M., Schwarz G., & Schöll E. (1998): Phys. Rev. B 57, 1824Google Scholar
  24. Prengel F., Patra M., Schwarz G., & Schöll E. (1997): in Proceed. of the 23rd International Conference on the Physics of Semiconductors, edited by M. Scheffler and R. Zimmermann (World Scientific, Singapore), p. 1667.Google Scholar
  25. Schöll E., Schwarz G., Patra M., & Wacker A. (1996): in Hot Carriers in Semiconductors, edited by K. Hess, J. P. Leburton, and U. Ravaioli (Plenum Press, New York), p. 177Google Scholar
  26. Wacker A. (1998): in Theory of Transport Properties of Semiconductor Nanostructures, edited by E. Schöll (Chapman and Hall, London), Chap. 10Google Scholar
  27. Wacker A., and Jauho A. P. (1998): Phys. Rev. Lett. 80, 369CrossRefGoogle Scholar
  28. Zhang et al. (1996a) Zhang Y., Klann R., Ploog K. H., & Grahn H. T. (1996): Appl. Phys. Lett. 69, 1116CrossRefGoogle Scholar
  29. Zhang et al. (1996b) Zhang Y., Kastrup J., Klann R., Ploog K. H., & Grahn H. T. (1996): Phys. Rev. Lett. 77, 3001CrossRefGoogle Scholar
  30. Zhang et al. (1997a) Zhang Y., Klann R., Grahn H. T., & Ploog K. H. (1997): Superlattices Microstruct. 21, 565CrossRefGoogle Scholar
  31. Zhang et al. (1997b) Zhang Y., Klann R., Ploog K. H., & Grahn H. T. (1997): Appl. Phys. Lett. 70, 2825CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • H. T. Grahn
    • 1
  1. 1.Paul-Drude-Institut für FestkörperelektronikBerlinGermany

Personalised recommendations