Skip to main content

Current Self-Oscillations and Chaos in Semiconductor Superlattices

  • Conference paper
  • First Online:
Statistical and Dynamical Aspects of Mesoscopic Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 547))

  • 612 Accesses

Abstract

Weakly coupled semiconductor superlattices represent a non-linear system, which exhibits tunable current self-oscillations and chaos. The non-linearity originates from resonant tunneling between two-dimensional subbands in adjacent wells. The current oscillations are due to a recycling motion of a charged monopole over several superlattice periods. The charged monopole appears, because the nonlinearity of the system in connection with a large carrier density results in the formation of electric-field domains in these systems. The monopole separates the different field regions. Current self-oscillations have been observed in doped and undoped, photoexcited superlattices up to frequencies of several GHz. A single period of the current oscillations contains additional spikes with a frequency more than one order of magnitude above the fundamental oscillation frequency. These spikes are a signature of the well-to-well hopping of the monopole. The fundamental oscillation frequency can be varied over more than two orders of magnitude by changing the applied voltage within a single sample. For different samples, a variation of the barrier width by a factor of three has resulted in a change of the fundamental oscillation frequency by more than three orders of magnitude. The frequency scales with the resonant coupling of the subbands in adjacent wells. In several samples, current self-oscillations have been observed up to room temperature. Recently, undoped superlattices have been used to investigate the carrier density dependence of the boundary between static and dynamic domain formation by varying the photoexcitation intensity. With increasing carrier density, the current oscillations disappear via a supercritical Hopf bifurcation, a subcritical Hopf bifurcation, and a homoclinic connection. The chaotic behavior of such a system, which was predicted through calculations within a simple drift-diffusion model, has also been investigated. The bifurcation diagram of the power spectra under application of an external ac voltage shows the well-known route to chaos via alternating windows of frequency locking and quasi-periodicity. Real-time current traces have been used to construct Poincaré sections, which support this interpretation. However, for other dc voltages, the route to chaos can become much more complex. Recently, the multi-fractal dimension of the chaotic attractors has been determined as a function of the dc voltage using the experimentally derived Poincaré sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonilla L. L. (1995): in Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices, edited by F.-J. Niedernostheide (Springer-Verlag, Berlin), Chap. 1

    Google Scholar 

  • Bonilla L.L., Galán J., Cuesta J. A., Martínez F. C., & Molera J. M. (1994): Phys. Rev. B 50, 8644

    Google Scholar 

  • Bulashenko O. M., and Bonilla L. L. (1995): Phys. Rev. B 52, 7849

    Google Scholar 

  • Bulashenko O. M., García M. J., & Bonilla L. L. (1996): Phys. Rev. B 53, 10008

    Google Scholar 

  • Bulashenko O. M., Luo K. J., Grahn H. T., Ploog K. H., & Bonilla L. L. (1999): Phys. Rev. B 60, 5694

    Google Scholar 

  • Esaki L., and Tsu R. (1970): IBM J. Res. Develop. 14, 61

    Article  CAS  Google Scholar 

  • Grahn H. T. (1995): Semiconductor Superlattices (World Scientific, Singapore)

    Google Scholar 

  • Grahn H. T. (1998): in Hot Electrons in Semiconductors, Physics and Devices, edited by N. Balkan (Clarendon Press, Oxford), pp. 357–381

    Google Scholar 

  • Grahn H., Kastrup J., Ploog K., Bonilla L., Galán J., Kindelan M., & Moscoso M. (1995): Jpn. J. Appl. Phys. 34, 4526

    Article  CAS  Google Scholar 

  • Grahn H. T., Kastrup J., Klann R., Ploog K. H., & Asai H. (1996): in Proceed. of the 23rd International Conference on the Physics of Semiconductors, edited by M. Scheffler and R. Zimmermann (World Scientific, Singapore), p. 1671

    Google Scholar 

  • Hosoda M., Mimura H., Ohtani N., Tominaga K., Watanabe T., Fujiwara K., & Grahn H. T. (1996): Appl. Phys. Lett. 69, 500

    Article  CAS  Google Scholar 

  • Kantelhardt J. W., Grahn H. T., Ploog K. H., Moscoso M., Perales A., & Bonilla L. L. (1997): Phys. Status Solidi B 204, 500

    Article  Google Scholar 

  • Kastrup J., Klann R., Grahn H. T., Ploog K., Bonilla L. L., Galán J., Kindelan M., Moscoso M., & Merlin R. (1995): Phys. Rev. B 52, 13761

    Google Scholar 

  • Kastrup J., Hey R., Ploog K. H., Grahn H. T., Bonilla L. L., Kindelan M., Moscoso M., Wacker A., & Galán J. (1997): Phys. Rev. B 55, 2476

    Google Scholar 

  • Luo et al. 1998a Luo K. J., Grahn H. T., Ploog K. H., & Bonilla L. L. (1998): Phys. Rev. Lett. 81, 1290

    Article  CAS  Google Scholar 

  • Luo et al. 1998b Luo K. J., Grahn H. T., Teitsworth S. W., & Ploog K.H. (1998): Phys. Rev. B 58, 12613

    Google Scholar 

  • Luo K. J., Teitsworth S. W., Kostial H., Grahn H. T., & Ohtani N. (1999): Appl. Phys. Lett. 74, 3845

    Article  CAS  Google Scholar 

  • Moscoso M., Bonilla L. L., & Galán J. (1999): in Proceed. the 24th International Conference on the Physics of Semiconductors edited by D. Gershoni (World Scientific, Singapore), V-C-14 (0524.pdf)

    Google Scholar 

  • Ohtani, N., Hosoda, M., & Grahn H. T. (1997): Appl. Phys. Lett. 70, 375

    Article  CAS  Google Scholar 

  • Ohtani et al. (1998a) Ohtani N., Egami N., Fujiwara K., & Grahn H. T. (1998): Solid-State Electron. 42, 1509

    Article  CAS  Google Scholar 

  • Ohtani et al. (1998b) Ohtani N., Egami N., Grahn H. T., Ploog K. H., & Bonilla L. L. (1998): Phys. Rev. B 58, R7528

    Google Scholar 

  • Ohtani et al. (1998c) Ohtani N., Egami N., Grahn H. T., & Ploog K. H. (1998): Physica B 249–251, 878

    Google Scholar 

  • Patra M., Schwarz G., & Schöll E. (1998): Phys. Rev. B 57, 1824

    Google Scholar 

  • Prengel F., Patra M., Schwarz G., & Schöll E. (1997): in Proceed. of the 23rd International Conference on the Physics of Semiconductors, edited by M. Scheffler and R. Zimmermann (World Scientific, Singapore), p. 1667.

    Google Scholar 

  • Schöll E., Schwarz G., Patra M., & Wacker A. (1996): in Hot Carriers in Semiconductors, edited by K. Hess, J. P. Leburton, and U. Ravaioli (Plenum Press, New York), p. 177

    Google Scholar 

  • Wacker A. (1998): in Theory of Transport Properties of Semiconductor Nanostructures, edited by E. Schöll (Chapman and Hall, London), Chap. 10

    Google Scholar 

  • Wacker A., and Jauho A. P. (1998): Phys. Rev. Lett. 80, 369

    Article  CAS  Google Scholar 

  • Zhang et al. (1996a) Zhang Y., Klann R., Ploog K. H., & Grahn H. T. (1996): Appl. Phys. Lett. 69, 1116

    Article  CAS  Google Scholar 

  • Zhang et al. (1996b) Zhang Y., Kastrup J., Klann R., Ploog K. H., & Grahn H. T. (1996): Phys. Rev. Lett. 77, 3001

    Article  CAS  Google Scholar 

  • Zhang et al. (1997a) Zhang Y., Klann R., Grahn H. T., & Ploog K. H. (1997): Superlattices Microstruct. 21, 565

    Article  CAS  Google Scholar 

  • Zhang et al. (1997b) Zhang Y., Klann R., Ploog K. H., & Grahn H. T. (1997): Appl. Phys. Lett. 70, 2825

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grahn, H.T. (1999). Current Self-Oscillations and Chaos in Semiconductor Superlattices. In: Reguera, D., Rubí, J.M., Platero, G., Bonilla, L.L. (eds) Statistical and Dynamical Aspects of Mesoscopic Systems. Lecture Notes in Physics, vol 547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45557-4_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-45557-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67478-8

  • Online ISBN: 978-3-540-45557-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics