Transport in Semiconductor Superlattices: From Quantum Kinetics to Terahertz-Photon Detectors

  • A. P. Jauho
  • A. Wacker
  • A. A. Ignatov
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)


Semiconductor superlattices are interesting for two distinct reasons: the possibility to design their structure (band-width(s), doping, etc.) gives access to a large parameter space where different physical phenomena can be explored. Secondly, many important device applications have been proposed, and then subsequently successfully fabricated. A number of theoretical approaches has been used to describe their current-voltage characteristics, such as miniband conduction, Wannier-Stark hopping, and sequential tunneling. The choice of a transport model has often been dictated by pragmatic considerations without paying much attention to the strict domains of validity of the chosen model. In the first part of this paper we review recent efforts to map out these boundaries, using a first- principles quantum transport theory, which encompasses the standard models as special cases. In the second part, focusing in the mini-band regime, we analyze a superlattice device as an element in an electric circuit, and show that its performance as a THz-photon detector allows significant optimization, with respect to geometric and parasitic effects, and detection frequency. The key physical mechanism enhancing the responsivity is the excitation of hybrid Bloch-plasma oscillations.


Boltzmann Equation Series Resistance Peak Current Density Superconducting Tunnel Junction Bloch Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970).CrossRefGoogle Scholar
  2. 2.
    A. Sibille, J. F. Palmier, H. Wang, and F. Mollot, Phys. Rev. Lett. 64, 52 (1990).CrossRefGoogle Scholar
  3. 3.
    H. T. Grahn, R. J. Haug, W. Müller, and K. Ploog, Phys. Rev. Lett. 67, 1618 (1991).CrossRefGoogle Scholar
  4. 4.
    C. Waschke et al., Phys. Rev. Lett. 70, 3319 (1993).CrossRefGoogle Scholar
  5. 5.
    M. Holthaus, Phys. Rev. Lett. 69, 351 (1992).CrossRefGoogle Scholar
  6. 6.
    B. J. Keay et al., Phys. Rev. Lett. 75, 4102 (1995).CrossRefGoogle Scholar
  7. 7.
    P. A. Lebwohl and R. Tsu, J. Appl. Phys. 41, 2664 (1970).CrossRefGoogle Scholar
  8. 8.
    R. Tsu and G. Döhler, Phys. Rev. B 12, 680 (1975).Google Scholar
  9. 9.
    D. Miller and B. Laikhtman, Phys. Rev. B 50, 18426 (1994).Google Scholar
  10. 10.
    A. Wacker and A. P. Jauho, Physica Scripta T69, 321 (1997).CrossRefGoogle Scholar
  11. 11.
    R. Aguado, G. Platero, M. Moscoso, and L. L. Bonilla, Phys. Rev. B 55, 16053 (1997)Google Scholar
  12. 12.
    A. Wacker and A. P. Jauho, Phys. Rev. Lett. 80, 369 (1998).CrossRefGoogle Scholar
  13. 13.
    A. Wacker, A. P. Jauho, S. Rott. A. Markus, P. Binder, and G. H. Döhler, Phys. Rev. Lett. 83, 836 (1999).CrossRefGoogle Scholar
  14. 14.
    A. A. Ignatov, E. P. Dodin, and V. I. Shashkin, Mod. Phys. Lett. B 5, 1087 (1991).Google Scholar
  15. 15.
    X. L. Lei, N. J. M. Horing, and H. L. Cui, Phys. Rev. Lett. 66, 3277 (1991).CrossRefGoogle Scholar
  16. 16.
    S. Rott, N. Linder, and G. H. Döhler, Superlattices and Microstructures 21, 569 (1997).CrossRefGoogle Scholar
  17. 17.
    V. V. Bryksin and P. Kleinert, J. Phys.: Cond. Mat. 9, 7403 (1997); S. Rott et al., Physica E (Amsterdam) 2, 511 (1998).CrossRefGoogle Scholar
  18. 18.
    G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990).Google Scholar
  19. 19.
    S. Q. Murphy, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 52, 14825 (1995).Google Scholar
  20. 20.
    A. Wacker, in Theory of transport properties of semiconductor nanostructures, edited by E. Schöll (Chapman and Hall, London, 1998), Chap. 10.Google Scholar
  21. 21.
    H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1996).Google Scholar
  22. 22.
    A. A. Ignatov, E. Schomburg, J. Grenzer, S. Winnerl, K. F. Renk and E. P. Dodin, Superlattices & Microstructures 22, 15 (1997).CrossRefGoogle Scholar
  23. 23.
    For a review, see J. R. Tucker and M. J. Feldman, Rev. Mod. Phys. 57, 1055 (1985).CrossRefGoogle Scholar
  24. 24.
    A. A. Ignatov and A. P. Jauho, J. Appl. Phys. 85, 3643 (1999)CrossRefGoogle Scholar
  25. 25.
    T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, Appl. Phys. Lett. 43, 588 (1983).CrossRefGoogle Scholar
  26. 26.
    H. C. Torrey and C. A. Whitmer, Crystal Rectifiers (McGraw-Hill, New York, 1948), p. 336.Google Scholar
  27. 27.
    A. A. Ignatov and V. I. Shashkin, Sov. Phys. JETP. 66, 526 (1987).Google Scholar
  28. 28.
    R. G. Chambers, Proc. Phys. Soc. (London) A 65, 458 (1952).Google Scholar
  29. 29.
    R. Tsu and L. Esaki, Appl. Phys. Lett. 19, 246 (1971).CrossRefGoogle Scholar
  30. 30.
    A. A. Ignatov and Yu. A. Romanov, Sov. Phys. Solid State 17, 2216 (1975); Phys. Status Solidi B 73, 327 (1976).Google Scholar
  31. 31.
    A. A. Ignatov and Yu. A. Romanov, Radiophysics and Quantum Electronics (Consultants Bureau, N.Y., 1978) Vol. 21, p. 90.CrossRefGoogle Scholar
  32. 32.
    M. Holthaus, Phys. Rev. Lett. 69, 351 (1992).CrossRefGoogle Scholar
  33. 33.
    A. A. Ignatov, K. F. Renk, and E. P. Dodin, Phys. Rev. Lett. 70, 1996 (1993); J. B. Xia, Phys. Rev. B 58, 3565 (1998).CrossRefGoogle Scholar
  34. 34.
    A. A. Ignatov, E. Schomburg, J. Grenzer, K. F. Renk, and E. P. Dodin, Z. Phys. B 98, 187 (1995).CrossRefGoogle Scholar
  35. 35.
    E. Dutisseuil, A. Sibille, J. F. Palmier, F. Aristone, F. Mollot, and V. Thietty-Mieg, Phys. Rev. B 49, 5093 (1994).Google Scholar
  36. 36.
    E. Schomburg, A. A. Ignatov, J. Grenser, K. F. Renk, D. G. Pavel'ev, Yu. Koschurinov, B. Ja. Melzer, S. Ivanov, S. Schaposchnikov, and P. S. Kop'ev, Appl. Phys. Lett. 68, 1096 (1996).CrossRefGoogle Scholar
  37. 37.
    S. Winnerl, E. Schomburg, J. Grenser, H.-J. Regl, A. A. Ignatov, A. D. Semenov, K. F. Renk, D G. Pavel'ev, Yu. Koschurinov, B. Ja. Melzer, V. Ustinov, S. Ivanov, S. Schaposchnikov, and P. S. Kop'ev, Phys. Rev. B 56, 10 303 (1997).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • A. P. Jauho
    • 1
  • A. Wacker
    • 2
  • A. A. Ignatov
    • 1
    • 3
  1. 1.Mikroelektronik CentretTechnical University of DenmarkLyngbyDenmark
  2. 2.Institute für Theoretische PhysikTechnische Universität BerlinBerlinGermany
  3. 3.Institute for Physics of MicrostructuresRussian Academy of ScienceNizhny NovgorodRussia

Personalised recommendations