A Fermi Pump

  • Mathias Wagner
  • Fernando Sols
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)


The use of a band offset between the two leads of an electron pump driven by a locally applied oscillating gate voltage is shown to increase the pump current dramatically. A spectral analysis reveals that the bulk of the pump current flows deep within the Fermi sea and not at the Fermi surface, especially in higher spatial dimensions, thereby rendering this effect insensitive to temperature.


Fermi Surface Transmission Probability Incident Electron Pump Current Spatial Asymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, Science 283, 1905 (1999).CrossRefGoogle Scholar
  2. [2]
    D. J. Thouless, Phys. Rev. B 27, 6083 (1983).Google Scholar
  3. [3]
    Q. Niu, Phys. Rev. Lett. 64, 1812 (1990).CrossRefGoogle Scholar
  4. [4]
    I. L. Aleiner and A. V. Andreev, Phys. Rev. Lett. 81, 1286 (1998).CrossRefGoogle Scholar
  5. [5]
    F. Zhou, B. Spivak, and B. L. Altshuler, Phys. Rev. Lett. 82, 608 (1999).CrossRefGoogle Scholar
  6. [6]
    B. L. Altshuler and L. I. Glazman, Science 283, 1864 (1999).CrossRefGoogle Scholar
  7. [7]
    C. A. Stafford and N. S. Wingreen, Phys. Rev. Lett. 76, 1916 (1996).CrossRefGoogle Scholar
  8. [8]
    T. H. Stoof and Y. V. Nazarov, Phys. Rev. B 53, 1050 (1996).Google Scholar
  9. [9]
    L. J. Geerligs et al., Phys. Rev. Lett. 64, 2691 (1990).CrossRefGoogle Scholar
  10. [10]
    L. P. Kouwenhoven et al., Phys. Rev. Lett. 67, 1626 (1991).CrossRefGoogle Scholar
  11. [11]
    I. Zapata, R. Bartussek, F. Sols, and P. Hänggi, Phys. Rev. Lett. 77, 2292 (1996).CrossRefGoogle Scholar
  12. [12]
    P. Reimann, M. Grifoni, and P. Hänggi, Phys. Rev. Lett. 79, 10 (1997).CrossRefGoogle Scholar
  13. [13]
    I. Zapata, J. MLuczka, F. Sols, and P. Hänggi, Phys. Rev. Lett. 80, 829 (1998).CrossRefGoogle Scholar
  14. [14]
    G. Burmeister and K. Maschke, Phys. Rev. B 57, 13050 (1998).Google Scholar
  15. [15]
    W. Ruppel, R. von Baltz, and P. Würfel, Ferroelectrics 43, 109 (1982).Google Scholar
  16. [16]
    M. Wagner, Phys. Rev. B 49, 16544 (1994).Google Scholar
  17. [17]
    M. Wagner, Phys. Rev. A 51, 798 (1995).CrossRefGoogle Scholar
  18. [18]
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).CrossRefGoogle Scholar
  19. [19]
    F. Sols, Ann. Phys. (NY) 214, 386 (1992).CrossRefGoogle Scholar
  20. [20]
    L. Lewin, Polylogarithms and Associated Functions (North Holland, New York, 1981).Google Scholar
  21. [21]
    M. H. Pedersen and M. Büttiker, Phys. Rev. B 58, 12993 (1998).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Mathias Wagner
    • 1
  • Fernando Sols
    • 2
  1. 1.Hitachi Cambridge LaboratoryCambridgeUnited Kingdom
  2. 2.Dpto. de Física Teórica de la Materia Condensada, C-V and Instituto de Ciencia de Materiales “Nicolás Cabrera”Universidad Autónoma de MadridMadridSpain

Personalised recommendations