Driven Tunneling: Chaos and Decoherence

  • Peter Hänggi
  • Sigmund Kohler
  • Thomas Dittrich
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)


Chaotic tunneling in a driven double-well system is investigated in absence as well as in the presence of dissipation. As the constitutive mechanism of chaos-assisted tunneling, we focus on the dynamics in the vicinity of three-level crossings in the quasienergy spectrum. They are formed when a tunnel doublet, located on a pair of symmetry-related tori in the classical phase space, approaches a chaotic singlet in energy. The coherent quantum dynamics near the crossing, in particular the enhanced tunneling that involves the chaotic singlet state as a “step stone”, is described satisfactorily by a three-state model. It fails, however, for the corresponding dissipative dynamics, because incoherent transitions due to the interaction with the environment indirectly couple the three states in the crossing to the remaining quasienergy states. We model dissipation by coupling the double well, the driving included, toa heat bath. The time dependence of the central system, with a quasienergy spectrum containing exponentially small tunnel splittings, requires special considerations when applying the Born-Markov and rotating-wave approximations to derive a master equation for the density operator. We discuss the effect of decoherence on the now transient chaos-assisted tunneling: While decoherence is accelerated practically independent of temperature near the center of the crossing, it can be stabilzed with increasing temperature at a chaotic-state induced exact crossing of the ground-state quasienergies. Moreover the asymptotic amount of coherence left within the vicinity of the crossing is enhanced if the temperature is below the splitting of the avoided crossing; but becomes diminished when temperature raises above the splitting (chaos-induced coherence or incoherence, respectively). The asymptotic state of the driven dissipative quantum dynamics partially resembles the, possibly strange, attractor of the corresponding damped driven classical dynamics, but alsoexhibits characteristic quantum effects.


Asymptotic State Strange Attractor Tunnel Splitting Husimi Function Chaotic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Ford, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Vol. 93 of Lecture Notes in Physics, edited by G. Casati and J. Ford (Springer, Berlin, 1979), p. 334.CrossRefGoogle Scholar
  2. [2]
    T. Dittrich and R. Graham, Ann. Phys. (N.Y.) 200, 363 (1990).CrossRefGoogle Scholar
  3. [3]
    E. Ott, Chaos in Dynamical Systems, Cambridge University Press (Cambridge 1993).Google Scholar
  4. [4]
    M.J. Davis and E.J. Heller, J. Chem. Phys. 75, 246 (1981).CrossRefGoogle Scholar
  5. [5]
    O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Lett. 64, 1479 (1990).CrossRefGoogle Scholar
  6. [6]
    O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Lett. 65, 5 (1990).CrossRefGoogle Scholar
  7. [7]
    O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43 (1993).CrossRefGoogle Scholar
  8. [8]
    S. Tomsovic and D. Ullmo, Phys. Rev. E 50, 145 (1994).Google Scholar
  9. [9]
    W. A. Lin and L. E. Ballentine, Phys. Rev. Lett. 65, 2927 (1990).CrossRefGoogle Scholar
  10. [10]
    W. A. Lin and L. E. Ballentine, Phys. Rev. A 45, 3637 (1992).CrossRefGoogle Scholar
  11. [11]
    R. Utermann, T. Dittrich, and P. Hänggi, Phys. Rev. E 49, 273 (1994).Google Scholar
  12. [12]
    P. Hänggi, R. Utermann, and T. Dittrich, Physica B 194–196, 1013 (1994).Google Scholar
  13. [13]
    M. Latka, P. Grigolini, and B. J. West, Phys. Rev. E 50, 596 (1994).Google Scholar
  14. [14]
    M. Latka, P. Grigolini, and B. J. West, Phys. Rev. A 50, 1071 (1994).CrossRefGoogle Scholar
  15. [15]
    M. Latka, P. Grigolini, and B. J. West, Phys. Rev. E 50, R3299 (1994).Google Scholar
  16. [16]
    E. M. Zanardi, J. Gutiérrez, and J. M. Gomez Llorente, Phys. Rev. E 52, 4736 (1995).Google Scholar
  17. [17]
    E. Doron and S. D. Frischat, Phys. Rev. Lett 75, 3661 (1995).CrossRefGoogle Scholar
  18. [18]
    S. D. Frischat and E. Doron, Phys. Rev. E 57, 1421 (1998).Google Scholar
  19. [19]
    F. Leyvraz and D. Ullmo, J. Phys. A 29, 2529 (1996).CrossRefGoogle Scholar
  20. [20]
    R. Roncaglia, L. Bonci, F. M. Izrailev, B. J. West, and P. Grigolini, Phys. Rev. Lett. 73, 802 (1994).CrossRefGoogle Scholar
  21. [21]
    A. O. Caldeira and A. L. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983); erratum: Ann. Phys. (N.Y.) 153, 445 (1984).CrossRefGoogle Scholar
  22. [22]
    M. Grifoni and P. Hänggi, Phys. Rep. 304, 219 (1998).CrossRefGoogle Scholar
  23. [23]
    T. Dittrich and R. Graham, Europhys. Lett. 4, 263 (1987).CrossRefGoogle Scholar
  24. [24]
    J. H. Shirley, Phys. Rev. 138, B979 (1965).CrossRefGoogle Scholar
  25. [25]
    H. Sambe, Phys. Rev. A 7, 2203 (1973).CrossRefGoogle Scholar
  26. [26]
    N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Phys. Rep. 141, 319 (1986).CrossRefGoogle Scholar
  27. [27]
    S.-I. Chu, Adv. Chem. Phys. 73, 739 (1989).CrossRefGoogle Scholar
  28. [28]
    T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, and W. Zwerger, Quantum Transport and Dissipation (Wiley-VCH, Weinheim, 1998).Google Scholar
  29. [29]
    D. J. Moore, Helv. Phys. Acta 66, 3 (1993).Google Scholar
  30. [30]
    M. L. Mehta, Random matrices and the statistical theory of energy levels (Academic Press, New York, 1967).Google Scholar
  31. [31]
    F. Haake, Quantum Signatures of Chaos, Vol. 54 of Springer Series in Synergetics (Springer, Berlin, 1991).Google Scholar
  32. [32]
    F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991).CrossRefGoogle Scholar
  33. [33]
    F. Grossmann, P. Jung, T. Dittrich, and P. Hänggi, Z. Phys. B 84, 315 (1991).CrossRefGoogle Scholar
  34. [34]
    A. Peres, Phys. Rev. Lett. 67, 158 (1991).CrossRefGoogle Scholar
  35. [35]
    F. Grossmann and P. Hänggi, Europhys. Lett. 18, 571 (1992).CrossRefGoogle Scholar
  36. [36]
    P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).CrossRefGoogle Scholar
  37. [37]
    T. Dittrich, B. Oelschlägel, and P. Hänggi, Europhys. Lett. 22, 5 (1993).CrossRefGoogle Scholar
  38. [38]
    B. Oelschlägel, T. Dittrich, and P. Hänggi, Acta Physica Polonica B 24, 845 (1993).Google Scholar
  39. [39]
    T. Dittrich, P. Hänggi, B. Oelschlägel, and R. Utermann, in 25 Years of Non-Equilibrium Statistical Mechanics, Vol. 445 of Lecture Notes in Physics, edited by J. J. Brey (Springer, Berlin, 1995), p. 269.CrossRefGoogle Scholar
  40. [40]
    A. J. Lichtenberg and M. A. Liebermann, Regular and Stochastic Motion, Vol. 38 of Applied Mathical Sciences (Springer, New York, 1983).Google Scholar
  41. [41]
    D. F. Escande, Phys. Rep. 121, 165 (1985).CrossRefGoogle Scholar
  42. [42]
    L. E. Reichl and W. M. Zheng, in Directions in Chaos, edited by H. B. Lin (World Scientific, Singapore, 1987), Vol. 1, p. 17.Google Scholar
  43. [43]
    M. Wilkinson, Physica D 21, 341 (1986).Google Scholar
  44. [44]
    M. Wilkinson, J. Phys. A 20, 635 (1987).CrossRefGoogle Scholar
  45. [45]
    S. Kohler, R. Utermann, P. Hänggi, and T. Dittrich, Phys. Rev. E 58, 7219 (1998).Google Scholar
  46. [46]
    L. E. Reichl, The Transition to Chaos: In Conservative and Classical Systems: Quantum Manifestations (Springer, New York, 1992).Google Scholar
  47. [47]
    R. B. Shirts and W. P. Reinhardt, J. Chem. Phys. 77, 5204 (1982).CrossRefGoogle Scholar
  48. [48]
    A first quantum Langevin formulation has been given by: V. B. Magalinskiľ, Zh. Eksp. Teor. Fiz. 36, 1942 (1959), [Sov. Phys. JETP 9, 1381 (1959)].Google Scholar
  49. [49]
    Classical formulations of the system-harmonic oscillator bath coupling scheme have been put forward by: N. N. Bogoliubov, in On some statistical methods in mathematical physics (Ukr. S.S.R. Acad. of Science Press, 1945), p. 115 (in russian); R. Zwanzig, J. Stat. Phys. 9, 215 (1973).Google Scholar
  50. [50]
    F. Haake, in Quantum Statistics in Optics and Solid-State Physics, Vol. 66 of Springer Tracts in Modern Physics, edited by G. Höhler (Springer, Berlin, 1973).Google Scholar
  51. [51]
    R. Blümel et al., Phys. Rev. Lett. 62, 341 (1989).CrossRefGoogle Scholar
  52. [52]
    R. Blümel et al., Phys. Rev. A 44, 4521 (1991).CrossRefGoogle Scholar
  53. [53]
    R. Graham and R. Hübner, Ann. Phys. (N.Y.) 234, 300 (1994).CrossRefGoogle Scholar
  54. [54]
    S. Kohler, T. Dittrich, and P. Hänggi, Phys. Rev. E 55, 300 (1997).Google Scholar
  55. [55]
    D. E. Makarov and N. Makri, Phys. Rev. E 52, 5863 (1995).CrossRefGoogle Scholar
  56. [56]
    N. Makri, J. Chem. Phys. 106, 2286 (1997).CrossRefGoogle Scholar
  57. [57]
    T. Dittrich and U. Smilansky, Nonlinearity 4, 59 (1991).CrossRefGoogle Scholar
  58. [58]
    K. Takahashi and N. Saitô, Phys. Rev. Lett. 55, 645 (1985).CrossRefGoogle Scholar
  59. [59]
    S.-J. Chang and K.-J. Shi, Phys. Rev. Lett. 55, 269 (1985).CrossRefGoogle Scholar
  60. [60]
    S.-J. Chang and K.-J. Shi, Phys. Rev. A 34, 7 (1986).CrossRefGoogle Scholar
  61. [61]
    B. Mirbach and H. J. Korsch, J. Phys. A 27, 6579 (1994).CrossRefGoogle Scholar
  62. [62]
    T. Gorin, H. J. Korsch, and B. Mirbach, Chem. Phys. 217, 145 (1997).CrossRefGoogle Scholar
  63. [63]
    F. C. Moon and G.-X. Li, Physica D 17, 99 (1985).Google Scholar
  64. [64]
    F. C. Moon and G.-X. Li, Phys. Rev. Lett. 55, 1439 (1985).CrossRefGoogle Scholar
  65. [65]
    W. Szemplinska-Stupnicka, Nonlinear Dynamics 3, 225 (1992).CrossRefGoogle Scholar
  66. [66]
    A. Anderson and J. J. Halliwell, Phys. Rev. D 48, 2753 (1993).CrossRefGoogle Scholar
  67. [67]
    A. Wehrl, Reps. Math. Phys. 16, 353 (1979); Reps. Math. Phys. 30, 119 (1991).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Peter Hänggi
    • 1
  • Sigmund Kohler
    • 2
  • Thomas Dittrich
    • 3
  1. 1.Institut für PhysikUniversität AugsburgAugsburgGermany
  2. 2.Depto. de Física Teórica de la Materia CondensadaUniversidad AutónomaMadridSpain
  3. 3.Depto. de FísicaUniversidad de los AndesSantafé de BogotáColombia

Personalised recommendations