Skip to main content

Driven Tunneling: Chaos and Decoherence

  • Conference paper
  • First Online:
Statistical and Dynamical Aspects of Mesoscopic Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 547))

Abstract

Chaotic tunneling in a driven double-well system is investigated in absence as well as in the presence of dissipation. As the constitutive mechanism of chaos-assisted tunneling, we focus on the dynamics in the vicinity of three-level crossings in the quasienergy spectrum. They are formed when a tunnel doublet, located on a pair of symmetry-related tori in the classical phase space, approaches a chaotic singlet in energy. The coherent quantum dynamics near the crossing, in particular the enhanced tunneling that involves the chaotic singlet state as a “step stone”, is described satisfactorily by a three-state model. It fails, however, for the corresponding dissipative dynamics, because incoherent transitions due to the interaction with the environment indirectly couple the three states in the crossing to the remaining quasienergy states. We model dissipation by coupling the double well, the driving included, toa heat bath. The time dependence of the central system, with a quasienergy spectrum containing exponentially small tunnel splittings, requires special considerations when applying the Born-Markov and rotating-wave approximations to derive a master equation for the density operator. We discuss the effect of decoherence on the now transient chaos-assisted tunneling: While decoherence is accelerated practically independent of temperature near the center of the crossing, it can be stabilzed with increasing temperature at a chaotic-state induced exact crossing of the ground-state quasienergies. Moreover the asymptotic amount of coherence left within the vicinity of the crossing is enhanced if the temperature is below the splitting of the avoided crossing; but becomes diminished when temperature raises above the splitting (chaos-induced coherence or incoherence, respectively). The asymptotic state of the driven dissipative quantum dynamics partially resembles the, possibly strange, attractor of the corresponding damped driven classical dynamics, but alsoexhibits characteristic quantum effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Ford, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Vol. 93 of Lecture Notes in Physics, edited by G. Casati and J. Ford (Springer, Berlin, 1979), p. 334.

    Chapter  Google Scholar 

  2. T. Dittrich and R. Graham, Ann. Phys. (N.Y.) 200, 363 (1990).

    Article  Google Scholar 

  3. E. Ott, Chaos in Dynamical Systems, Cambridge University Press (Cambridge 1993).

    Google Scholar 

  4. M.J. Davis and E.J. Heller, J. Chem. Phys. 75, 246 (1981).

    Article  CAS  Google Scholar 

  5. O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Lett. 64, 1479 (1990).

    Article  Google Scholar 

  6. O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Lett. 65, 5 (1990).

    Article  Google Scholar 

  7. O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43 (1993).

    Article  Google Scholar 

  8. S. Tomsovic and D. Ullmo, Phys. Rev. E 50, 145 (1994).

    Google Scholar 

  9. W. A. Lin and L. E. Ballentine, Phys. Rev. Lett. 65, 2927 (1990).

    Article  Google Scholar 

  10. W. A. Lin and L. E. Ballentine, Phys. Rev. A 45, 3637 (1992).

    Article  Google Scholar 

  11. R. Utermann, T. Dittrich, and P. Hänggi, Phys. Rev. E 49, 273 (1994).

    Google Scholar 

  12. P. Hänggi, R. Utermann, and T. Dittrich, Physica B 194–196, 1013 (1994).

    Google Scholar 

  13. M. Latka, P. Grigolini, and B. J. West, Phys. Rev. E 50, 596 (1994).

    Google Scholar 

  14. M. Latka, P. Grigolini, and B. J. West, Phys. Rev. A 50, 1071 (1994).

    Article  Google Scholar 

  15. M. Latka, P. Grigolini, and B. J. West, Phys. Rev. E 50, R3299 (1994).

    CAS  Google Scholar 

  16. E. M. Zanardi, J. Gutiérrez, and J. M. Gomez Llorente, Phys. Rev. E 52, 4736 (1995).

    CAS  Google Scholar 

  17. E. Doron and S. D. Frischat, Phys. Rev. Lett 75, 3661 (1995).

    Article  CAS  Google Scholar 

  18. S. D. Frischat and E. Doron, Phys. Rev. E 57, 1421 (1998).

    CAS  Google Scholar 

  19. F. Leyvraz and D. Ullmo, J. Phys. A 29, 2529 (1996).

    Article  Google Scholar 

  20. R. Roncaglia, L. Bonci, F. M. Izrailev, B. J. West, and P. Grigolini, Phys. Rev. Lett. 73, 802 (1994).

    Article  Google Scholar 

  21. A. O. Caldeira and A. L. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983); erratum: Ann. Phys. (N.Y.) 153, 445 (1984).

    Article  Google Scholar 

  22. M. Grifoni and P. Hänggi, Phys. Rep. 304, 219 (1998).

    Article  Google Scholar 

  23. T. Dittrich and R. Graham, Europhys. Lett. 4, 263 (1987).

    Article  Google Scholar 

  24. J. H. Shirley, Phys. Rev. 138, B979 (1965).

    Article  Google Scholar 

  25. H. Sambe, Phys. Rev. A 7, 2203 (1973).

    Article  Google Scholar 

  26. N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Phys. Rep. 141, 319 (1986).

    Article  CAS  Google Scholar 

  27. S.-I. Chu, Adv. Chem. Phys. 73, 739 (1989).

    Article  CAS  Google Scholar 

  28. T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, and W. Zwerger, Quantum Transport and Dissipation (Wiley-VCH, Weinheim, 1998).

    Google Scholar 

  29. D. J. Moore, Helv. Phys. Acta 66, 3 (1993).

    Google Scholar 

  30. M. L. Mehta, Random matrices and the statistical theory of energy levels (Academic Press, New York, 1967).

    Google Scholar 

  31. F. Haake, Quantum Signatures of Chaos, Vol. 54 of Springer Series in Synergetics (Springer, Berlin, 1991).

    Google Scholar 

  32. F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991).

    Article  Google Scholar 

  33. F. Grossmann, P. Jung, T. Dittrich, and P. Hänggi, Z. Phys. B 84, 315 (1991).

    Article  Google Scholar 

  34. A. Peres, Phys. Rev. Lett. 67, 158 (1991).

    Article  Google Scholar 

  35. F. Grossmann and P. Hänggi, Europhys. Lett. 18, 571 (1992).

    Article  Google Scholar 

  36. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).

    Article  Google Scholar 

  37. T. Dittrich, B. Oelschlägel, and P. Hänggi, Europhys. Lett. 22, 5 (1993).

    Article  CAS  Google Scholar 

  38. B. Oelschlägel, T. Dittrich, and P. Hänggi, Acta Physica Polonica B 24, 845 (1993).

    Google Scholar 

  39. T. Dittrich, P. Hänggi, B. Oelschlägel, and R. Utermann, in 25 Years of Non-Equilibrium Statistical Mechanics, Vol. 445 of Lecture Notes in Physics, edited by J. J. Brey (Springer, Berlin, 1995), p. 269.

    Chapter  Google Scholar 

  40. A. J. Lichtenberg and M. A. Liebermann, Regular and Stochastic Motion, Vol. 38 of Applied Mathical Sciences (Springer, New York, 1983).

    Google Scholar 

  41. D. F. Escande, Phys. Rep. 121, 165 (1985).

    Article  Google Scholar 

  42. L. E. Reichl and W. M. Zheng, in Directions in Chaos, edited by H. B. Lin (World Scientific, Singapore, 1987), Vol. 1, p. 17.

    Google Scholar 

  43. M. Wilkinson, Physica D 21, 341 (1986).

    Google Scholar 

  44. M. Wilkinson, J. Phys. A 20, 635 (1987).

    Article  Google Scholar 

  45. S. Kohler, R. Utermann, P. Hänggi, and T. Dittrich, Phys. Rev. E 58, 7219 (1998).

    CAS  Google Scholar 

  46. L. E. Reichl, The Transition to Chaos: In Conservative and Classical Systems: Quantum Manifestations (Springer, New York, 1992).

    Google Scholar 

  47. R. B. Shirts and W. P. Reinhardt, J. Chem. Phys. 77, 5204 (1982).

    Article  CAS  Google Scholar 

  48. A first quantum Langevin formulation has been given by: V. B. Magalinskiľ, Zh. Eksp. Teor. Fiz. 36, 1942 (1959), [Sov. Phys. JETP 9, 1381 (1959)].

    Google Scholar 

  49. Classical formulations of the system-harmonic oscillator bath coupling scheme have been put forward by: N. N. Bogoliubov, in On some statistical methods in mathematical physics (Ukr. S.S.R. Acad. of Science Press, 1945), p. 115 (in russian); R. Zwanzig, J. Stat. Phys. 9, 215 (1973).

    Google Scholar 

  50. F. Haake, in Quantum Statistics in Optics and Solid-State Physics, Vol. 66 of Springer Tracts in Modern Physics, edited by G. Höhler (Springer, Berlin, 1973).

    Google Scholar 

  51. R. Blümel et al., Phys. Rev. Lett. 62, 341 (1989).

    Article  Google Scholar 

  52. R. Blümel et al., Phys. Rev. A 44, 4521 (1991).

    Article  Google Scholar 

  53. R. Graham and R. Hübner, Ann. Phys. (N.Y.) 234, 300 (1994).

    Article  Google Scholar 

  54. S. Kohler, T. Dittrich, and P. Hänggi, Phys. Rev. E 55, 300 (1997).

    CAS  Google Scholar 

  55. D. E. Makarov and N. Makri, Phys. Rev. E 52, 5863 (1995).

    Article  CAS  Google Scholar 

  56. N. Makri, J. Chem. Phys. 106, 2286 (1997).

    Article  CAS  Google Scholar 

  57. T. Dittrich and U. Smilansky, Nonlinearity 4, 59 (1991).

    Article  Google Scholar 

  58. K. Takahashi and N. Saitô, Phys. Rev. Lett. 55, 645 (1985).

    Article  Google Scholar 

  59. S.-J. Chang and K.-J. Shi, Phys. Rev. Lett. 55, 269 (1985).

    Article  Google Scholar 

  60. S.-J. Chang and K.-J. Shi, Phys. Rev. A 34, 7 (1986).

    Article  CAS  Google Scholar 

  61. B. Mirbach and H. J. Korsch, J. Phys. A 27, 6579 (1994).

    Article  Google Scholar 

  62. T. Gorin, H. J. Korsch, and B. Mirbach, Chem. Phys. 217, 145 (1997).

    Article  CAS  Google Scholar 

  63. F. C. Moon and G.-X. Li, Physica D 17, 99 (1985).

    Google Scholar 

  64. F. C. Moon and G.-X. Li, Phys. Rev. Lett. 55, 1439 (1985).

    Article  Google Scholar 

  65. W. Szemplinska-Stupnicka, Nonlinear Dynamics 3, 225 (1992).

    Article  Google Scholar 

  66. A. Anderson and J. J. Halliwell, Phys. Rev. D 48, 2753 (1993).

    Article  CAS  Google Scholar 

  67. A. Wehrl, Reps. Math. Phys. 16, 353 (1979); Reps. Math. Phys. 30, 119 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hänggi, P., Kohler, S., Dittrich, T. (1999). Driven Tunneling: Chaos and Decoherence. In: Reguera, D., Rubí, J.M., Platero, G., Bonilla, L.L. (eds) Statistical and Dynamical Aspects of Mesoscopic Systems. Lecture Notes in Physics, vol 547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45557-4_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-45557-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67478-8

  • Online ISBN: 978-3-540-45557-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics