Advertisement

Transport and Noise of Entangled Electrons

  • Eugene V. Sukhorukov
  • Daniel Loss
  • Guido Burkard
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 547)

Abstract

We consider a scattering set-up with an entangler and beam splitter where the current noise exhibits bunching behavior for electronic singlet states and antibunching behavior for triplet states.We show that the entanglement of two electrons in the double-dot can be detected in mesoscopic transport measurements. In the cotunneling regime the singlet and triplet states lead to phase-coherent current contributions of opposite signs and to Aharonov-Bohm and Berry phase oscillations in response to magnetic fields. We analyze the Fermi liquid effects in the transport of entangled electrons.

Keywords

Entangle State Beam Splitter Random Phase Approximation Fermi Liquid Berry Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Einstein, B. Podolsky, N. Rosen Phys. Rev. 47, 777 (1935).Google Scholar
  2. [2]
    C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), p. 175.Google Scholar
  3. [3]
    D. Loss, D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).Google Scholar
  4. [4]
    G. Burkard, D. Loss, D. P. DiVincenzo, Phys. Rev. B 59 2070 (1999).Google Scholar
  5. [5]
    A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804(1982).CrossRefGoogle Scholar
  6. [6]
    A. Zeilinger, in Physics World, March 1998.Google Scholar
  7. [7]
    G. Burkard, D. Loss and E. V. Sukhorukov, preprint (cond-mat/9906071).Google Scholar
  8. [8]
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, Vol. 3 (Addison-Wesley, 1965).Google Scholar
  9. [9]
    D. P. DiVincenzo, D. Loss, preprint (cond-mat/9901137).Google Scholar
  10. [10]
    R. Loudon, in Coherence and Quantum Optics VI, eds. J. H. Eberly et al. (Plenum, New York, 1990).Google Scholar
  11. [11]
    R. Hanbury Brown and R. Q. Twiss, Nature (London) 177, 27 (1956).CrossRefGoogle Scholar
  12. [12]
    M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990); Phys. Rev. B46, 12485 (1992).CrossRefGoogle Scholar
  13. [13]
    T. Martin, R. Landauer, Phys. Rev. B45, 1742 (1992).Google Scholar
  14. [14]
    R. C. Liu et al., Nature 391, 263 (1998); M. Henny et al., Science 284, 296 (1999); W. D. Oliver et al., Science 284, 299 (1999).CrossRefGoogle Scholar
  15. [15]
    E. V. Sukhorukov and D. Loss, Phys. Rev. B59, 13054(1999).Google Scholar
  16. [16]
    D. Loss and E. V. Sukhorukov, preprint (cond-mat/9907129).Google Scholar
  17. [17]
    D. V. Averin, Yu. V. Nazarov, in Single Charge Tunneling, eds. H. Grabert and M.H. Devoret, NATO ASI Series B: Physics Vol. 294, Plenum Press, New York, 1992; J. Knig, H. Schoeller, and G. Schn, Phys. Rev. Lett. 78, 4482 (1997).Google Scholar
  18. [18]
    D. Loss, P. Goldbart, Phys. Rev. B 45, 13544 (1992).Google Scholar
  19. [19]
    G. D. Mahan, Many Particle Physics, 2nd Ed. (Plenum, New York, 1993).Google Scholar
  20. [20]
    A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems (New York, McGraw-Hill, 1971).Google Scholar
  21. [21]
    G. F. Guiliani and J. J. Quinn, Phys. Rev. B 26, 4421 (1982).Google Scholar
  22. [22]
    D. Loss, G. Burkard, and E. Sukhorukov, Quantum communication with electrons, unpublished.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Eugene V. Sukhorukov
    • 1
  • Daniel Loss
    • 1
  • Guido Burkard
    • 1
  1. 1.Department of Physics and AstronomyUniversity of BaselBaselSwitzerland

Personalised recommendations