Skip to main content

Superfluid Couette flow

  • Conference paper
  • First Online:
Physics of Rotating Fluids

Part of the book series: Lecture Notes in Physics ((LNP,volume 549))

Abstract

The stability of the Couette flow of superfluid helium is discussed using a generalized form of Landau’s two-fluid model. It is showed that the tension of the superfluid vortex lines has a great influence in determining the critical wavenumber and the critical Reynolds number of the transition from azimuthal Couette flow to Taylor vortex flow. The resulting Taylor vortex flow pattern is different from ordinary Taylor vortex flow and tends to be very elongated in the axial direction. Since the vortex tension is proportional to Planck’s constant, the observed difference is a manifestation of quantum effects on the macroscopic scale. The aim of this article is to review the current understanding of superfluid Couette flow and point to the issues which are still unsolved, the directions of future development and the new link with current turbulence research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Donnelly: High Reynolds number flows using liquid and gaseous helium. (Springer, New York 1991)

    Google Scholar 

  2. C.F. Barenghi, C.J. Swanson and R.J. Donnelly: J. Low Temp. Phys. 100, 385 (1995)

    Article  ADS  Google Scholar 

  3. L. Landau, E. Lifchitz: Mécanique des fluides. (Editions MIR, Moscow 1971)

    Google Scholar 

  4. J.T. Tough: ‘Superfluid turbulence’. In: Progress in Low Temperature Physics vol. VIII, ed. D. F. Brewer, North Holland, Amsterdam page 133 (1987).

    Google Scholar 

  5. R.J. Donnelly: Quantized vortices in helium II. (Cambridge University Press, Cambridge 1991)

    Google Scholar 

  6. H.E. Hall, W.F. Vinen: Proc. Roy. Soc. London A238, 215(1954)

    ADS  Google Scholar 

  7. I.M. Khalatnikov: An introduction to the theory of superfluidity. (Benjamin, New York 1965)

    Google Scholar 

  8. R.N. Hills, P.H. Roberts: Arch. Ration. Mech. Analysis 66, 43 (1971)

    ADS  MathSciNet  Google Scholar 

  9. D.C. Samuels, R.J. Donnelly: Phys. Rev. Lett. 65, 187 (1990)

    Article  ADS  Google Scholar 

  10. C.F. Barenghi, R.J. Donnelly, W.F. Vinen: J. Low Temp. Phys. 32, 189 (1983)

    Article  ADS  Google Scholar 

  11. E.L. Adronikashvili, Y.G. Mamaladze: Rev. Modern Phys.38, 567 (1966).

    Article  ADS  Google Scholar 

  12. R.J. Donnelly, M.M. LaMar: J. Fluid Mech. 186, 163 (1988)

    Article  ADS  Google Scholar 

  13. S. Chandrasekhar, R.J. Donnelly: Proc. Roy. Soc. London A241, 9 (1957)

    ADS  MathSciNet  Google Scholar 

  14. H. Snyder: In Proceedings of the 13 th International Conference of Low Temperature Physics (LT13), vol. 1, p. 283 (Plenum Press, New York, 1974)

    Google Scholar 

  15. C.F. Barenghi, C.A. Jones: J. Fluid Mech. 197, 551 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. C.J. Swanson, R.J. Donnelly: Phys. Rev. Lett. 67, 1568 (1991)

    ADS  Google Scholar 

  17. C.F. Barenghi: Phys. Rev. B 45, 2290 (1992)

    Article  ADS  Google Scholar 

  18. A. L. Fetter: Phys. Rev. 153, 285(1967)

    Article  MATH  ADS  Google Scholar 

  19. C.E. Swanson, R.J. Donnelly: J. Low Temp. Phys. 67, 185(1987)

    Article  ADS  Google Scholar 

  20. C.A. Jones, K.B. Khan, C.F. Barenghi, K.L. Henderson: Phys. Rev. B 51, 16174 (1995)

    Article  ADS  Google Scholar 

  21. C.F. Barenghi, C.A. Jones: Phys. Lett. 122, 425(1987)

    Article  Google Scholar 

  22. F. Bielert, G. Stamm: Physica B 194, 561 (1994)

    Article  ADS  Google Scholar 

  23. K.L. Henderson, C.F. Barenghi, C.A. Jones: J. Fluid Mech. 283, 329 (1995i)

    Article  MATH  ADS  Google Scholar 

  24. K.L. Henderson, C.F. Barenghi: Phys. Lett. A 191, 438 (1994)

    Article  ADS  Google Scholar 

  25. W.J. Heikkila, A.C. Hollis Hallet, Can. J. Phys. 33, 420 (1955)

    Google Scholar 

  26. C.F. Barenghi, C.J. Swanson, R.J. Donnelly: J. Low Temp. Phys. 99, 143 (1995)

    Article  ADS  Google Scholar 

  27. C.F. Barenghi, Phys. Rev. B 52, 3596 (1995)

    Article  ADS  Google Scholar 

  28. K.L. Henderson, C.F. Barenghi: to be published in J. Fluid Mech.

    Google Scholar 

  29. G. Pfister, H. Schmidt, K.A. Cliffe, T. Mullin: J. Fluid Mech. 191, 1 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  30. P.L. Wolf, B. Perrin, B. Hulin, J.P. Elleaume: J. Low Temp. Phys. 44, 569 (1981)

    Article  ADS  Google Scholar 

  31. S. Chandrasekhar: Hydrodynamics and hydromagnetic stability. (Oxford University Press, Oxford 1961).

    Google Scholar 

  32. D.C. Samuels: Phys. Rev. B 47, 1107 (1993)

    Article  ADS  Google Scholar 

  33. C.F. Barenghi, G. Bauer, D.C. Samuels, R.J. Donnelly: Phys. Fluids 9, 2631 (1997)

    Article  ADS  Google Scholar 

  34. D.K. Cheng, M.W. Cromar and R.J. Donnelly: Phys. Rev. Lett. 31, 433 (1973)

    Article  ADS  Google Scholar 

  35. R.M. Ostermeier, W.I. Glaberson: J. Low Temp. Phys. 21, 191 (1975)

    Article  ADS  Google Scholar 

  36. D. Kivotides, D.C. Samuels: to be published in Phys. Rev. Lett.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barenghi, C.F. (2000). Superfluid Couette flow. In: Egbers, C., Pfister, G. (eds) Physics of Rotating Fluids. Lecture Notes in Physics, vol 549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45549-3_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45549-3_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67514-3

  • Online ISBN: 978-3-540-45549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics