Skip to main content

Cooperative Co-evolution of Multi-agents

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2253))

Included in the following conference series:

  • 490 Accesses

Abstract

In this paper, we propose a method to obtain strategy coalitions, whose confidences are adjusted by genetic algorithm to improve the generalization ability, in the process of co-evolutionary learning with a social game called Iterated Prisoner’s Dilemma (IPD) game. Experimental results show that several better strategies can be obtained through strategy coalition, and evolutionary optimization of the confidence for strategies within coalition improves the generalization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Axelrod, “The evolution of strategies in the iterated prisoner’s dilemma,” in Genetic Algorithms and Simulated Annealing (L. Davis, ed.), ch. 3, pp. 32–41, San Mateo, CA: Morgan Kaufmann, 1987.

    Google Scholar 

  2. A. M. Colman, Game Theory and Experimental Games, Oxford, England: Pergamon Press, 1982.

    Google Scholar 

  3. X. Yao and P. Darwen, “An experimental study of N-person iterated prisoner’s dilemma games,” Informatica, vol. 18, pp. 435–450, 1994.

    MATH  Google Scholar 

  4. R. Axelrod, The Evolution of Cooperation. New York: Basic Books, 1984.

    Google Scholar 

  5. R. Axelrod and D. Dion, “The further evolution of cooperation,” Science, vol. 242, pp. 1385–1390, December 1988.

    Google Scholar 

  6. P. J. Darwen and X. Yao, “Speciation as automatic categorical modularization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 2, pp. 101–108, 1997.

    Article  Google Scholar 

  7. Y. G Seo, S.-B. Cho and X. Yao, “Emergence of cooperative coalition in NIPD game with localization of interaction and learning,” Proc of Congress on Evolutionary Computation (CEC’99), Piscataway, NJ USA), pp. 877–884, IEEE Press,1999.

    Google Scholar 

  8. Y. G. Seo, S.-B. Cho and X. Yao, “The impact of payoff function and local interaction on the N-player iterated prisoner’s dilemma game,” Knowledge and Information Systems: An International Journal, vol. 3, no. 4, pp. 461–478, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cho, SB. (2001). Cooperative Co-evolution of Multi-agents. In: Terano, T., Ohsawa, Y., Nishida, T., Namatame, A., Tsumoto, S., Washio, T. (eds) New Frontiers in Artificial Intelligence. JSAI 2001. Lecture Notes in Computer Science(), vol 2253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45548-5_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45548-5_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43070-4

  • Online ISBN: 978-3-540-45548-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics