Skip to main content

Approximate k-MSTs and k-Steiner Trees via the Primal-Dual Method and Lagrangean Relaxation

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2081))

Abstract

We consider the problem of computing the minimum-cost tree spanning at least k vertices in an undirected graph. Garg [10] gave two approximation algorithms for this problem. We show that Garg’s al- gorithms can be explained simply with ideas introduced by Jain and Vazirani for the metric uncapacitated facility location and k-median problems [15], in particular via a Lagrangean relaxation technique to- gether with the primal-dual method for approximation algorithms. We also derive a constant-factor approximation algorithm for the k-Steiner tree problem using these ideas, and point out the common features of these problems that allow them to be solved with similar techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arora and G. Karakostas. Approximation schemes for minimum latency problems. In Proceedings of the 31st Annual ACM Symposium on the Theory of Computing, pages 688–693, 1999.

    Google Scholar 

  2. S. Arora and G. Karakostas. A 2 + ∈ approximation algorithm for the k-MST problem. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 754–759, 2000.

    Google Scholar 

  3. S. Arya and H. Ramesh. A 2.5-factor approximation algorithm for the k-MST problem. Information Processing Letters, 65:117–118, 1998.

    Article  MathSciNet  Google Scholar 

  4. B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. SIAM Journal on Computing, 28(1):254–262, 1999.

    Article  MathSciNet  Google Scholar 

  5. M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Information Processing Letters, 32:171–176, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Blum, P. Chalasani, D. Coppersmith, W. Pulleyblank, P. Raghavan, and M. Sudan. The minimum latency problem. In Proceedings of the 26th Annual ACM Symposium on the Theory of Computing, pages 163–171, 1994.

    Google Scholar 

  7. A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation algorithm for the k-MST problem. Journal of Computer and System Sciences, 58(1):101–108, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location and k-median problems. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, pages 378–388, 1999.

    Google Scholar 

  9. M. Fischetti, H. Hamacher, K. Jørnsten, and F. Maffioli. Weighted k-cardinality trees: Complexity and polyhedral structure. Networks, 24:11–21,1994.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pages 302–309, 1996.

    Google Scholar 

  11. N. Garg. Personal communication, 1999.

    Google Scholar 

  12. M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency problem. Mathematical Programming, 82:111–124, 1998.

    MathSciNet  Google Scholar 

  13. M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest problems. SIAM Journal on Computing, 24:296–317, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. X. Goemans and D. P. Williamson. The primal-dual method for approximation algorithms and its application to network design problems. In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, chapter 4, pages 144–191. PWS Publishing Company, 1997.

    Google Scholar 

  15. K. Jain and V. V. Vazirani. Primal-dual approximation algorithms for metric facility location and k-median problems. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science, pages 2–13, 1999.

    Google Scholar 

  16. S. Rajagopalan and Vijay V. Vazirani. Logarithmic approximation of minimum weight k trees. Unpublished manuscript, 1995.

    Google Scholar 

  17. R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning trees short or small. SIAM Journal on Discrete Mathematics, 9:178–200, 1996.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chudak, F.A., Roughgarden, T., Williamson, D.P. (2001). Approximate k-MSTs and k-Steiner Trees via the Primal-Dual Method and Lagrangean Relaxation. In: Aardal, K., Gerards, B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2001. Lecture Notes in Computer Science, vol 2081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45535-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45535-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42225-9

  • Online ISBN: 978-3-540-45535-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics