Skip to main content

On the Detection of Quantum Noise and Low-Temperature Dephasing

  • Conference paper
  • First Online:
  • 523 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 579))

Abstract

We discuss the detection of quantum fluctuations in the light of the general van Hove - type relationship between time-dependent correlators and measurable properties. Considering the interaction between the fluctuating electron system and a resonant circuit or a photon mode, we prove that zero point fluctuations (ZPF) are not observable by a passive detector, corroborating the results of Lesovik and Loosen. By a passive detector we mean one which is itself effectively in the ground state, and can not transfer energy to the ZPF whose detection is attempted. We find that the ZPF can, on the other hand, be observed through the absorption spectrum, via the deexcitation of an active detector. We also make the connection between these statements and the recent discussion of whether decoherence can be caused by the ZPF. We derive a useful general formula for the dephasing rate and use it along with the detailed-balance condition, to prove that the dephasing rate vanishes at the T → 0 limit. The distinction is made between decoherence via making a real excitation in the environment and effects due to its polarization by virtual excitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Buks, R. Schuster, M. Heiblum, D. Mahalu and V. Umansky, Nature 391, 871 (1998).

    Article  CAS  Google Scholar 

  2. Y. Levinson, Europhys. Lett. 39, 299 (1997).

    Article  CAS  Google Scholar 

  3. B.L. Altshuler, A.G. Aronov, and D.E. Khmelnitskii, J. Phys. C15, 7367 (1982).

    Google Scholar 

  4. A. Stern, Y. Aharonov, and Y. Imry, Phys. Rev. A41, 3436 (1990); and in G. Kramer, ed. Quantum Coherence in Mesoscopic Systems, NATO ASI Series no. 254, Plenum., p. 99 (1991).

    Google Scholar 

  5. Y. Imry, Introduction to Mesoscopic Physics, Oxford Unversity Press (1997).

    Google Scholar 

  6. G.B. Lesovik and R. Loosen, JETP Lett., 65, 295(1997); see also: G.B. Lesovik and L. S. Levitov, Phys. Rev. Lett 72, 538 (1994).

    Article  Google Scholar 

  7. P. Mohanty, E.M. Jariwala and R.A. Webb, Phys. Rev. Lett. 78, 3366 (1997); P. Mohanty and R.A. Webb, Phys. Rev. B55, 13452 (1997).

    Article  CAS  Google Scholar 

  8. For the Quantum Optics context, see for example, S. Haroche, Physics Today 51 (7), 35(1998).

    Article  Google Scholar 

  9. L. van Hove, Phys. Rev 95, 249 (1954). In this classic paper, the dynamic correlation function for the density 〈n q(0)n-q(t〉, was introduced, it was shown that its time Fourier transform, S(q, ω), yields the inelastic Born scattering cross section from the system, the properties of the latter were analyzed and the connection to the dissipative response indicated.

    Article  Google Scholar 

  10. U. Gavish, Y. Levinson and Y. Imry, Phys. Rev. 62, R10637 (2000).

    Article  CAS  Google Scholar 

  11. G. Baym, Lectures on Quantum Mechanics, p. 271–276, Addison-Wesley (1993).

    Google Scholar 

  12. L. D. Landau and E. M. Lifschitz, Statistical Physics, Pergamon (1958).

    Google Scholar 

  13. G.B. Lesovik, Phys. Usp., 41(2), 145 (1998)

    Article  Google Scholar 

  14. J. R. Tucker and M. J. Feldman, Revs. Mod. Phys. 57, 1055 (1985).

    Article  CAS  Google Scholar 

  15. V.A. Khlus, JETP 66, 1243 (1987); G.B. Lesovik, JETP Lett., 49, 592 (1989); Th. Martin and R. Landauer, Phys. Rev. B45, 1742 (1992); M. Büttiker, Phys. Rev. B46, 12485, (1992).

    Google Scholar 

  16. E. Merzbacher, Quantum Mechanics, John Wiley and Sons (1970).

    Google Scholar 

  17. Y. Imry, Y. Gefen, and D. J. Bergman, Phys. Rev. B26, 3436 (1982).

    Google Scholar 

  18. R.A. Webb, P. Mohanty and E.M. Jariwala in Quantum Coherence and Decoherence, proceedings of ISQM, Tokyo (1998), K. Fujikawa and Y. A. Ono, eds. North Holland, Amsterdam (2000).

    Google Scholar 

  19. D.S. Golubev and A.D. Zaikin, Phys. Rev. Lett., 81, 1074 (1998); Phys. Rev. B59, 9195(1999); Phys. Rev. Lett., 82, 3191 (1999).

    Article  CAS  Google Scholar 

  20. I. L. Aleiner, B. L. Altshuler, M. E. Gershenson, Waves in Random Media 9, 201 (1999); Phys. Rev. Lett., 82, 3190 (1999).

    Article  Google Scholar 

  21. B. L. Altshuler, M. E. Gershenson, I. L. Aleiner, Physica A3, 58 (1998).

    Google Scholar 

  22. Yu. B. Khavin, M. E. Gershenson and A. L. Bogdanov, Phys. Rev. Lett., 81, 1066 (1998), Phys. Rev. B58, 8009 (1998); M. E. Gershenson et al., Sov. Phys. Uspekhi 41 (2), 186 (1998).

    Article  CAS  Google Scholar 

  23. D. Cohen and Y. Imry, Phys. Rev. B59, 11143 (1999).

    Google Scholar 

  24. Y. Imry, as in ref. [19].

    Google Scholar 

  25. Interestingly, this issue appears to have been settled already in 1988. See, for example, J. Rammer, A. L. Shelankov and A. Schmid, Phys. Rev. Lett. 60, 1985 (1988).

    Article  CAS  Google Scholar 

  26. Y. Imry, H. Fukuyama and P. Schwab, Europhys. Lett, 47, 608 (1999).

    Article  CAS  Google Scholar 

  27. A. B. Gougam, F. Pierre, H. Pothier, D. Esteve and N. O. Birge, J. Low Temp. Phys. 118, 447 (2000); see also: F. Pierre, H. Pothier, D. Esteve and M. H. Devoret, ibid.; F. Pierre, Ph.D. thesis, Universite Paris VI (2000), unpublished.

    Article  CAS  Google Scholar 

  28. P. Cedraschi, V. V. Ponomarenko and M. Büttiker, Phys. Rev. Lett. 84, 346 (2000).

    Article  CAS  Google Scholar 

  29. A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987); A. Stern, Ph.D. Thesis, Tel-Aviv University (1990), unpublished.

    Article  CAS  Google Scholar 

  30. Z. Ovadyahu, unpublished (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gavish, U., Levinson, Y., Imry, Y. (2001). On the Detection of Quantum Noise and Low-Temperature Dephasing. In: Haug, R., Schoeller, H. (eds) Interacting Electrons in Nanostructures. Lecture Notes in Physics, vol 579. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45532-9_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45532-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42222-8

  • Online ISBN: 978-3-540-45532-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics