Computing Entropy Maps of Finite-Automaton-Encoded Binary Images

  • Mark G. Eramian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2214)


Finite automata are being used to encode images. Applications of this technique include image compression, and extraction of self similarity information and Hausdorff dimension of the encoded image. Jürgensen and Staiger [7] proposed a method by which the local Hausdorff dimension of the encoded image could be effectively computed. This paper describes the first implementation of this procedure and presents some experimental results showing local entropy maps computed from images represented by finite automata.


Adjacency Matrix Binary Image Hausdorff Dimension Finite Automaton State Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Culik II, K., Kari, J.: Digital Images and Formal Languages. In [9] 599–616.Google Scholar
  2. 2.
    Culik II, K., Kari, J.: Image Compression using Weighted Finite Automata. Comput. and Graphics 17(3) (1993) 305–313CrossRefGoogle Scholar
  3. 3.
    Culik II, K., Valenta, V.: Finite Automata Based Compression of Bi-level and Simple Color Images. Comput. and Graphics 21(1), (1997) 61–68CrossRefMathSciNetGoogle Scholar
  4. 4.
    Eramian, M.: Computing Entropy Maps of Finite-Automaton-Encoded Binary Images. Technical Report #544, Department of Computer Science, University of Western Ontario.Google Scholar
  5. 5.
    Eramian, M., Schincariol, R. A., Mansinha, L., Stockwell, R. G.: Generation of Aquifer Heterogeneity Maps using Two Dimensional Spectral Texture Segmentation Techniques. Mathematical Geology, 31(3) (1999) 327–348CrossRefGoogle Scholar
  6. 6.
    Gerald, C. F., Wheatley, P. O.: Applied Numerical Analysis, Fifth Edition. Addison-Wesley Publishing Company (1994)Google Scholar
  7. 7.
    Jurgensen, H., Staiger, L.: Local Hausdorff Dimension. Acta Informatica 32 (1995) 491–507MathSciNetGoogle Scholar
  8. 8.
    Pal, N. R., Pal, S. K.: A review on image segmentation techniques. Pattern Recognition 26(9) (1993) 1277–1294CrossRefGoogle Scholar
  9. 9.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages Vol. 3, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, Berlin (1997)zbMATHGoogle Scholar
  10. 10.
    Seneta, E.: Non-negative Matrices and Markov Chains, second edition. Springer-Verlag, New York (1981)zbMATHGoogle Scholar
  11. 11.
    Staiger, L.: Quadtrees and the Hausdorff Dimension of Pictures. In: Geobild’ 89, Proceedings of the 4th Workshop on Geometrical Problems of Image Processing held in Georgenthal, March 13–17, 1989, edited by A. Hubler, W. Nagel, B. D. Ripley, G. Werner. Akademie-Verlag, Berlin (1989) 173–178Google Scholar
  12. 12.
    Thomas, W.: Automata on Infinite Objects. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, edited by J. V. Leeuwen. Elsevier, Amsterdam (1994) 133–191Google Scholar
  13. 13.
    Van Gool, L., Dewaele, P., Oosterlinck, A.:Texture Analysis. Comput. Vision Graphics Image Process. 29(3) (1985) 336–357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Mark G. Eramian
    • 1
  1. 1.Department of Computer ScienceUniversity of Western OntarioLondonCanada

Personalised recommendations