Advertisement

SEA: A Symbolic Environment for Automata Theory

  • Philippe Andary
  • Pascal Caron
  • Jean-Marc Champarnaud
  • Gérard Duchamp
  • Marianne Flouret
  • Éric Laugerotte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2214)

Abstract

We here present the system SEA which integrates manipulations over boolean and multiplicity automata. The system provides also self development facilities.

Keywords

Regular Expression Automaton Theory Maple Package List Format External Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Berstel and D. Perrin, Theory of codes, Academic Press, 1985.Google Scholar
  2. 2.
    J. Berstel and C. Reutenauer, Rational series and their languages, EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Berlin, 1988.Google Scholar
  3. 3.
    P. Caron, AG: A set of Maple packages for manipulating automata and finite semigroups. Software-Practice & Experience, 27(8), 863–884, 1997.Google Scholar
  4. 4.
    J.-M. Champarnaud and G. Hansel, Automate, a computing package for automata and finite semigroups, J. Symbolic Comput., 12, 197–220, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    G. Duchamp, M. Flouret and E. Laugerotte, Operations over automata with multiplicities, WIA 98, to appear in Lect. Notes in Comp. Sci.Google Scholar
  6. 6.
    S. Eilenberg, Automata, Languages, and Machines, Vol. A, Academic Press, 1974.Google Scholar
  7. 7.
    M. Flouret and E. Laugerotte, Noncommutative minimization algorithms, Inform. Process. Lett., 64, 123–126, 1997.CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Flouret, Contribution à lálgorithmique non commutative, Ph.D. thesis, University of Rouen, 1999.Google Scholar
  9. 9.
    J. E. Hopcroft, An n log n algorithm for minimizing the states in a finite automaton, In Z. Kohavi, editor, The theory of machines and computations, pages 189–196. Academic Press, New York, 1971.Google Scholar
  10. 10.
    J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.Google Scholar
  11. 11.
    S. C. Kleene, Representation of events in nerve nets and finite automata, Automata studies, 1956.Google Scholar
  12. 12.
    M. Lothaire, Combinatorics on words, Addison-Wesley, 1983.Google Scholar
  13. 13.
    O. Matz, A. Miller, A. Potthoff, W. Thomas, and E. Valkena, Report on the program AMoRE, Report, Institut fur informatik und praktische mathematik, Christian-Albrechts Universitat, Kiel, 1995.Google Scholar
  14. 14.
    E. F. Moore, Gedanken experiments on sequential machines, In Automata studies, pages 129–153, Princeton Univ. Press, Princeton, N.J., 1956.Google Scholar
  15. 15.
    A. Nerode, Linear automata transformation In Proceedings of AMS 9, pages 541–544, 1958.Google Scholar
  16. 16.
    D. Raymond and D. Wood, Grail, a C++ library for automata and expressions, J. Symbolic Comput., 17, 341–350, 1994.CrossRefGoogle Scholar
  17. 17.
    M. P. Schutzenberger, On the definition of a family of automata, Inform. and Control, 4,245–270, 1961.CrossRefMathSciNetGoogle Scholar
  18. 18.
    M. P. Schutzenberger, On a theorem of R. Jungen, Proc. Amer. Soc., 13, 885–890, 1962.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Philippe Andary
    • 1
  • Pascal Caron
    • 1
  • Jean-Marc Champarnaud
    • 1
  • Gérard Duchamp
    • 1
  • Marianne Flouret
    • 1
  • Éric Laugerotte
    • 1
  1. 1.LIFARUniversité de RouenMont-Saint-Aignan CedexFrance

Personalised recommendations