Advertisement

An Algorithm to Verify Local Threshold Testability of Deterministic Finite Automata

  • A.N. Trahtman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2214)

Abstract

A locally threshold testable language L is a language with the property that for some nonnegative integers k and l, whether or not a word u is in the language L depends on (1) the prefix and suffix of the word u of length k-1 and (2) the set of intermediate substrings of length k of the word u where the sets of substrings occurring at least j times are the same, for jl. For given k and l the language is called l-threshold ktestable. A finite deterministic automaton is called l-threshold k-testable

New version of polynomial time algorithm to verify the local testability will be presented too.

Keywords

deterministic finite automaton locally threshold testable algorithm semigroup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aho, J. Hopcroft, J. Ulman, The Design and Analisys of Computer Algorithms, Addison-Wesley, 1974.Google Scholar
  2. 2.
    J. Almeida, Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon, J. Pure Appl. Alg., 69(1990), 205–208.Google Scholar
  3. 3.
    M.-P. Beal, J. Senellart, On the bound of the synchronization delay of local automata, Theoret. Comput. Sci. 205, 1-2(1998), 297–306.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Beauquier, J.E. Pin, Factors of words, Lect. Notes in Comp. Sci, Springer, Berlin, 372(1989), 63–79.Google Scholar
  5. 5.
    D. Beauquier, J.E. Pin, Languages and scanners, Theoret. Comp. Sci, 1, 84(1991), 3–21.CrossRefGoogle Scholar
  6. 6.
    J.-C. Birget, Strict local testability of the finite control of two-way automata and of regular picture description languages, J. of Alg. Comp., 1, 2(1991), 161–175.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J.A. Brzozowski, I. Simon, Characterizations of locally testable events, Discrete Math., 4, (1973), 243–271.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    P. Caron, LANGAGE: A Maple package for automaton characterization of regular languages, Springer, Lect. Notes in Comp. Sci., 1436(1998), 46–55.Google Scholar
  9. 9.
    Z. Esik, I. Simon, Modelling literal morphisms by shuffle. Semigroup Forum, 56(1998), 2, 225–227.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Ginzburg, About some properties of definite, reverse-definite and related automata, IEEE Trans. Electron. Comput. EC-15(1966), 806–810.CrossRefGoogle Scholar
  11. 11.
    T. Head, Formal languages theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bull. Math. Biol., 49(1987), 4, 739–757.Google Scholar
  12. 12.
    F. Hinz, Classes of picture languages that cannot be distinguished in the chain code concept and deletion of redundant retreats, Springer, Lect. Notes in Comp. Sci., 349(1990), 132–143.Google Scholar
  13. 13.
    S. Kim, R. McNaughton, R. McCloskey, An upper bound for the order of locally testable deterministic finite automaton, Lect. Notes in Comp. Sci., 401(1989), 48–65.Google Scholar
  14. 14.
    S. Kim, R. McNaughton, R. McCloskey, A polynomial time algorithm for the local testability problem of deterministic finite automata, IEEE Trans. Comput. 40(1991) N10, 1087–1093.CrossRefMathSciNetGoogle Scholar
  15. 15.
    S. Kim, R. McNaughton, Computing the order of a locally testable automaton, Lect. Notes in Comp. Sci, Springer, 560(1991), 186–211.Google Scholar
  16. 16.
    G. Lallement, Semigroups and combinatorial applications, Wiley, N.Y., 1979.Google Scholar
  17. 17.
    S. W. Margolis, J.E. Pin, Languages and inverse semigroups, Lect. Notes in Comp. Sci, Springer, 199(1985), 285–299.MathSciNetGoogle Scholar
  18. 18.
    R. McNaughton, S. Papert, Counter-free automata, M.I.T. Press Mass., 1971.Google Scholar
  19. 19.
    M. Minsky, S. Papert, Perceptrons, M.I.T. Press Mass., 1971, Cambridge, MA, 1969.Google Scholar
  20. 20.
    J. Pin, Finite semigroups and recognizable languages. An introduction, Semigroups and formal languages, Math. and Ph. Sci., 466(1995), 1–32.Google Scholar
  21. 21.
    M. Perles, M. O. Rabin, E. Shamir, The theory of definite automata, IEEE Trans. Electron. Comput. EC-12(1963), 233–243.CrossRefMathSciNetGoogle Scholar
  22. 22.
    J. Reiterman, The Birkhoff theorem for finite algebras, Algebra Universalis, 14(1982), 1–10.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    R.E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput., 1(1972), 146–160.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    W. Thomas, Classifying regular events in symbolic logic, J. of Comp. System Sci, 25(1982), 360–376.CrossRefGoogle Scholar
  25. 25.
    A.N. Trahtman, The varieties of n-testable semigroups, Semigroup Forum, 27(1983), 309–318.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    A.N. Trahtman, A polynomial time algorithm for local testability and its level. Int. J. of Algebra and Comp., v. 9, 1(1998), 31–39.CrossRefMathSciNetGoogle Scholar
  27. 27.
    A.N. Trahtman, The identities of k-testable semigroups. Comm. in algebra, v. 27, 11(1999), 5405–5412.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    A.N. Trahtman, A precise estimation of the order of local testability of a deterministic finite automaton, Springer, Lect. Notes in Comp. Sci., 1436(1998), 198–212.Google Scholar
  29. 29.
    Th. Wilke, Locally threshold testable languages of infinite words, Lect. Notes in Comp. Sci, Springer, Berlin, 665(1993), 63–79.Google Scholar
  30. 30.
    Th. Wilke, An algebraic theory for regular languages of finite and infinite words, Int. J. Alg. and Comput. 3(1993), 4, 447–489.CrossRefGoogle Scholar
  31. 31.
    Y. Zalcstein, Locally testable semigroups, Semigroup Forum, 5(1973), 216–227.Google Scholar
  32. 32.
    Y. Zalcstein, Locally testable languages, J. Comp. System Sci., 6(1972), 151–167.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • A.N. Trahtman
    • 1
  1. 1.Dep. of Math. and CSBar-Ilan UniversityRamat GanIsrael

Personalised recommendations