Advertisement

FA Minimisation Heuristics for a Class of Finite Languages

  • Jérôme Amilhastre
  • Philippe Janssen
  • Marie-Catherine Vilarem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2214)

Abstract

In this paper, we deal with minimization of finite automata associated with finite languages all the words have the same length. This problem arises in the context of Constraint Satisfaction Problems, widely used in AI. We first give some complexity results which are based on the strong relationship with covering problems of bipartite graphs. We then use these coverings as a basic tool for the definition of minimization heuristics, and describe some experimental results.

Keywords

Bipartite Graph Constraint Satisfaction Problem Finite Automaton Reduction Operation State Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AVJ98]
    J. Amilhastre, M. C. Vilarem, and P. Janssen. Complexity of minimum biclique cover and decomposition for bipartite domino-free graphs. Discrete Applied Mathematics, 86(2):125–144, September 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [Bry86]
    R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers, C(35-6):677–691, 1986.CrossRefGoogle Scholar
  3. [DWW98]
    J. Daciuk, W. Watson, and B.W. Watson. Incremental construction of minimal acyclic finite state automata and transducers. In Finite State Methods in Natural Language Processing, Ankara, Turkey, 1998.Google Scholar
  4. [FH93]
    P.C. Fishburn and P.L. Hammer. Bipartite dimensions and bipartite degrees of graphs. Technical Report 76, DIMACS, June 1993. available at http://dimacs.rutgers.edu/TechnicalReports.
  5. [JR93]
    Tao Jiang and B. Ravikumar. Minimal NFA Problems are hard. SIAM Journal of Computation, 22:1117–1141, December 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [Kim74]
    J. Kim. State minimization of nondeterministic machines. Technical report, IBM Thomas J. Watson Res. Center, 1974. RC 4896.Google Scholar
  7. [KW70]
    T. Kameda and P. Weiner. On the state minimization of nondeterministic finite automata. IEEE Trans. Comp., C(19):617–627, 1970.CrossRefMathSciNetGoogle Scholar
  8. [Mon74]
    U. Montanari. Networks of constraints: fundamental properties and applications to picture processing. Information Sciences, (7):95–132, 1974.Google Scholar
  9. [MP95]
    O. Matz and A. Potthoff. Computing small nondeterministic finite automata. In A. Skou U.H. Engberg, K.G. Larsen, editor, Workshop on Tools and Algorithms for the Construction and Analysis of Systems, pages 74–88. BRICS Notes Series, May 1995.Google Scholar
  10. [Orl77]
    J. Orlin. Containment in graph theory: Covering graphs with cliques. Nederl. Akad. Wetensch. Indag. Math., 39:211–218, 1977.MathSciNetGoogle Scholar
  11. [Rev91]
    Dominique Revuz. Dictionnaires et Lexiques, méthodes et algorithmes. PhD thesis, Université Paris VII, Février 1991.Google Scholar
  12. [Vem92]
    N. R. Vempaty. Solving constraint satisfaction problems using finite state automata. In American Association for Artificial Intelligence (AAAI’92), pages 453–458, San Jose, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jérôme Amilhastre
    • 1
  • Philippe Janssen
    • 1
  • Marie-Catherine Vilarem
    • 1
  1. 1.Laboratoire d’Informatique de Robotique et de Microélectronique de MontpellierUMR CNRS-Univ Montpellier II, IFAMontpellier cedex 5France

Personalised recommendations