Skip to main content

Codes over Z 4

  • Chapter
  • First Online:
Computational Discrete Mathematics

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2122))

Abstract

One recent direction in coding theory has been to study linear codes over the alphabet Z 4 and apply the Gray map from Z 4 to binary pairs to obtain binary nonlinear codes better than comparable binary linear codes. This connection between linear codes over Z 4 and nonlinear binary codes was also the breakthrough in solving an old puzzle of the apparent duality between the nonlinear Kerdock and Preparata codes. We present a description of this puzzle and a brief introduction to codes over Z 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.R. Calderbank and G. McGuire, “Construction of a (64, 237,12) code via Galois rings”, Designs, Codes and Cryptography, 10 (1997), 157–165.

    Article  MATH  MathSciNet  Google Scholar 

  2. A.R. Calderbank, G. McGuire, P.V. Kumar and T. Helleseth, “Cyclic codes over Z 4, locator polynomials and Newton’s identities”, IEEE Trans. Inform. Theory, 42 (1996), 217–226.

    Article  MATH  MathSciNet  Google Scholar 

  3. A.R. Hammons Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Solé, “The Z4-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Trans. Inform. Theory, 40 (1994), 301–319.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Helleseth, P. V. Kumar and A. Shanbhag, “Exponential sums over Galois rings and their applications”, Finite Fields and their Applications, London Mathematical Society, Lecture Note Series 233, edited by S. Cohen and H. Niederreiter,Cambridge University Press, (1996), 109–128.

    Google Scholar 

  5. A.M. Kerdock, “A class of low-rate nonlinear binary codes”, Inform. Contr., 20 (1972), 182–187.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Nechaev, “The Kerdock code in a cyclic form”, Discrete Math. Appl., 1 (1991), 365–384.

    Article  MATH  MathSciNet  Google Scholar 

  7. F.P. Preparata, “A class of optimum nonlinear double-error correcting codes”, Inform. Contr., 13 (1968), 378–400.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helleseth, T. (2001). Codes over Z 4 . In: Alt, H. (eds) Computational Discrete Mathematics. Lecture Notes in Computer Science, vol 2122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45506-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45506-X_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42775-9

  • Online ISBN: 978-3-540-45506-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics