Advertisement

Modelisation of Timed Automata in Coq

  • Christine Paulin-Mohring
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2215)

Abstract

This paper presents the modelisation of a special class of timed automata, named p-automata in the proof assistant Coq. This work was performed in the framework of the CALIFE project1 which aims to build a general platform for specification, validation and test of critical algorithms involved in telecommunications. This paper does not contain new theoretical results but explains how to combine and adapt known techniques in order to build an environment dedicated to a class of problems. It emphasizes the specific features of Coq which have been used, in particular dependent types and tactics based on computational reflection.

Keywords

Decision Procedure Theorem Prove Recursive Function Intuitionistic Logic Label Transition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 1994.Google Scholar
  2. 2.
    E. Beffara, O. Bournez, H. Kacem, and C. Kirchner. Verification of timed automata using rewrite rules and strategies. http://www.loria.fr/~kacem/AT/timedautomata.ps.gz, 2001.
  3. 3.
    B. Bérard and L. Fribourg. Automated verification of a parametric real-time program: the abr conformance protocol. In 11th Int. Conf. Computer Aided Verification (CAV’99), number 1633 in Lecture Notes in Computer Science, pages 96–107. Springer-Verlag, 1999.CrossRefGoogle Scholar
  4. 4.
    B. Bérard, L. Fribourg, F. Klay, and J.-F. Monin. A compared study of two correctness proofs for the standardized algorithm of abr conformance. Formal Methods in System Design, 2001. To appear.Google Scholar
  5. 5.
    Samuel Boutin. Using reflection to build efficient and certified decision procedures. In Takahashi Ito and Martin Abadi, editors, TACS’97, volume 1281. LNCS, Springer-Verlag, 1997.Google Scholar
  6. 6.
    P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable? In 12th Int. Conf. Computer Aided Verification (CAV’2000), volume 1855 of Lecture Notes in Computer Science, pages 464–479, Chicago, IL, USA, July 2000. Springer-Verlag.CrossRefGoogle Scholar
  7. 7.
    P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Expressiveness of updatable timed automata. In 25th Int. Symp. Math. Found. Comp. Sci. (MFCS’2000), volume 1893 of Lecture Notes in Computer Science, pages 232–242, Bratislava, Slovakia, August 2000. Springer-Verlag.CrossRefGoogle Scholar
  8. 8.
    P. Castéran and D. Rouillard. Reasoning about parametrized automata. In 8th International Conference on Real-Time System, 2000.Google Scholar
  9. 9.
    David Delahaye. A Tactic Language for the System coq. In Logic for Programming and Automated Reasoning (LPAR’ 00), volume 1955 of Lecture Notes in Computer Science, pages 85–95, Reunion Island, November 2000. Springer-Verlag.CrossRefGoogle Scholar
  10. 10.
    C. Paulin & E. Freund. Timed automata and the generalised abr protocol. Contribution to the Coq system, 2000. http://coq.inria.fr.
  11. 11.
    L. Fribourg. A closed-form evaluation for extended timed automata. Research Report LSV-98-2, Lab. Specification and Verification, ENS de Cachan, Cachan, France, March 1998.Google Scholar
  12. 12.
    S. Graf and H. Saidi. Verifying invariants using theorem proving. In 8th Conf on Computer-Aided Verification (CAV’96), volume 1102 of Lecture Notes in Computer Science, New Brunswick, NJ, USA, July 1996. Springer-Verlag.Google Scholar
  13. 13.
    E. L. Gunter. Adding external decision procedures to hol90 securely. In Jim Grundy and Malcolm Newey, editors, Theorem Proving in Higher Order Logics 11th International Conference (TPHOLs’98), volume 1479 of Lecture Notes in Computer Science. Canberra, Australia, Springer-Verlag, September 1998.Google Scholar
  14. 14.
    T. Henzinger, P.-F. Ho, and H. Wong-Toi. A user guide to HYTECH. In TACAS’95, volume 1019 of Lecture Notes in Computer Science, pages 41–71, 1995.Google Scholar
  15. 15.
    D. Hirschkoff. A full formalisation of the ?-calculus theory in the Calculus of Constructions. In E. Gunter and A. Felty, editors, Theorem Proving in Higher-Order Logics, volume 1275 of Lecture Notes in Computer Science. Springer-Verlag, 1997.Google Scholar
  16. 16.
    F. Honsell, M. Miculan, and I. Scagnetto. Picalculus in (co)inductive type theories. Technical report, Dipartimento di Matematica e Informatica, Universita’ di Udine, 1998.Google Scholar
  17. 17.
    J.-F. Monin. Proving a real time algorithm for ATM in Coq. In Typesfor Proofs and Programs(TYPES’96), volume 1512 of Lecture Notes in Computer Science, pages 277–293. Springer-Verlag, 1998.CrossRefGoogle Scholar
  18. 18.
    J.-F. Monin and F. Klay. Correctness proof of the standardized algorithm for ABR conformance. In Formal Methods’99, volume 1708 of Lecture Notes in Computer Science, pages 662–681. Springer-Verlag, 1999.Google Scholar
  19. 19.
    S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining specification, proof checking, and model checking. In Rajeev Alur and Thomas A. Henzinger, editors, Computer-Aided Verification, CAV’ 96, volume 1102 of Lecture Notes in Computer Science, pages 411–414, New Brunswick, NJ, July/August 1996. Springer-Verlag.Google Scholar
  20. 20.
    P. Z. Revesz. A closed-form evaluation for datalog queries with integer (gap)-order constraints. Theoretical Computer Science, 116:117–149, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. Rusinowitch, S. Stratulat, and F. Klay. Mechanical verification of a generic incremental ABR conformance algorithm. In 12th Int. Conf. Computer Aided Verification (CAV’00), volume 1855 of Lecture Notes in Computer Science, Chicago, IL, USA, July 2000. Springer-Verlag.Google Scholar
  22. 22.
    C. Sprenger. A verified model-checker for the modal μ-calculus in Coq. In TACAS’98, volume 1384 of Lecture Notes in Computer Science, Lisbon, Portugal, 1998. Springer-Verlag.Google Scholar
  23. 23.
    The Coq Development Team. The Coq Proof Assistant Reference Manual-Version V7.0, April 2001. http://coq.inria.fr.
  24. 24.
    K. N. Verma. Reflecting symbolic model checking in coq. M’emoire de dea, DEA Programmation, September 2000. http://www.lsv.enscachan. fr/Publis/PAPERS/Ver-dea2000.ps.
  25. 25.
    K. N. Verma, J. Goubault-Larrecq, S. Prasad, and S. Arun-Kumar. Reflecting bdds in coq. In 6th Asian Computing Science Conference (ASIAN’2000), volume 1961 of Lecture Notes in Computer Science, pages 162–181. Springer-Verlag, November 2000.Google Scholar
  26. 26.
    S. Yu and Z. Luo. Implementing a model-checker for LEGO. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, FME’97, volume 1313 of Lecture Notes in Computer Science, pages 442–458, September 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Christine Paulin-Mohring
    • 1
  1. 1.Université Paris-Sud, Laboratoire de Recherche en InformatiqueOrsay CedexFrance

Personalised recommendations