Skip to main content

Audio Content Description in Sound Databases

  • Conference paper
  • First Online:
Web Intelligence: Research and Development (WI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2198))

Included in the following conference series:

Abstract

Sound database indexing requires metadata to represent audio content of the data. If the metadata are not attached to the database by its creator, content information has to be extracted directly from sounds, using descriptors based on sound analysis. In this paper, authors present a number of sound descriptors based on various forms of signal analysis. Telescope Vector trees (TV-trees) and Frame Segment trees (FS-trees) are applied to represent audio content on the basis of the extracted sound descriptors and metadata provided by the database creator (if only available). Such a representation of audio content of the database is used to speed up the search of the audio material in multimedia databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando S., Yamaguchi K., Statistical Study of Spectral Parameters in Musical Instrument Tones, J. Acoust. Soc. of America, 94, 1, July 1993, 37–45

    Article  Google Scholar 

  2. D’Autilia R., Guerra F., Qualitative Aspects of Signal Processing Through Dynamic Neural Networks, in: Representations of Musical Signals (G. De Poli, A. Piccialli, C. Roads, Eds.), MIT Press, Cambridge, Massachusetts, 1991, 447–462

    Google Scholar 

  3. Garnett G. E., Music, Signals, and Representations: A Survey, in: Representations of Musical Signals (G. De Poli, A. Piccialli, C. Roads, Eds.), MIT Press, Cambridge, Massachusetts, 1991, 325–369

    Google Scholar 

  4. Herrera P., Amatriain X., Batlle E., Serra X., Towards instrument segmentation for music content description: a critical review of instrument classification techniques, International Symposium on Music Information Retrieval ISMIR 2000, Plymouth, MA, October 23-25, 2000

    Google Scholar 

  5. ISO/IEC: MPEG-7 Overview (version 3.0), International Organisation For Standardisation, ISO/IEC JTC1/SC29/WG11, Coding of Moving Pictures and Audio, N3445, Geneva, May/June 2000

    Google Scholar 

  6. Jansson E. V., Sundberg J., Long-Time-Average-Spectra Applied to Analysis of Music. Part I: Method and General Applications, Acustica, Vol. 34, 1975, 15–19

    Google Scholar 

  7. Keele D. B. Jr., Time-Frequency Display of Electro-Acoustic Data Using Cycle-Octave Wavelet Transforms, 99th Audio Engineering Society Convention, New York 1995, preprint 4136

    Google Scholar 

  8. Kostek B., Wieczorkowska A., Parametric Representation of Musical Sounds, Archive of Acoustics, 22, 1, Institute of Fundamental Technological Research, Warsaw, Poland, 1997, 3–26

    Google Scholar 

  9. Krimphoff J., McAdams S., Winsberg S., Caractérisation du Timbre des Sons Complexes. II. Analyses acoustiques et quantification psychophysique, Journal de Physique IV, Colloque C5, supplement J. de Physique III, 4, 3ème Congrès Français d’Acoustique, I, 1994, 625–628

    Google Scholar 

  10. Maher R. C., Evaluation of a Method for Separating Digitized Duet Signals, J. Audio Eng. Soc., Vol. 38, No. 12, 1990, 956–979

    Google Scholar 

  11. Martin K. D., Kim Y. E., Musical instrument identification: A pattern-recognition approach, 136th meeting of the Acoustical Society of America, October 13, 1998. Internet: ftp://ftp.sound.media.mit.edu/pub/Papers/kdm-asa98.pdf

  12. McGloughlin, Multimedia: concepts and practice, Prentice Hall, Upper Saddle River, NJ, 2001

    Google Scholar 

  13. Papaodysseus C., Roussopoulos G., Fragoulis D., Panagopoulos Th., and Alexiou C., A New Approach to the Automatic Recognition of Musical Recordings, J. Audio Eng. Soc., Vol. 49, No. 1/2, 2001, 23–35

    Google Scholar 

  14. Paraskevas M., Mourjopoulos J., A Statistical Study of the Variability and Features of Audio Signals: Some Preliminary Results, 100th AES Convention, preprint 4256, Copenhagen 1996

    Google Scholar 

  15. Pollard H. F., Jansson E. V., A Tristimulus Method for the Specification of Musical Timbre, Acustica, Vol. 51, 1982, 162–171

    Google Scholar 

  16. Reuter C., Karl Erich Schumann’s Principles of Timbre as a Helpful Tool in Stream Segregation Research, Joint International Conference 1996, College of Europe at Brugge, Belgium, 8-11 September 1996, II Int. Conf. on Cognitive Musicology, 212–219

    Google Scholar 

  17. Sharda N. K., Multimedia information networking, Prentice Hall, Upper Saddle River, NJ, 1999

    Google Scholar 

  18. Subrahmanian V.S., Multimedia Database Systems, Morgan Kaufmann Publishers, San Francisco, CA, 1998

    Google Scholar 

  19. Toiviainen P., Optimizing Self-Organizing Timbre Maps: Two Approaches, Proc. Joint Int. Conf., II Int. Conf. on Cognitive Musicology, 1996, College of Europe at Brugge, Belgium, 8-11 September 1996, 264–271

    Google Scholar 

  20. Uematsu H., Ozawa K., Suzuki Y., Sone T., A Consideration on the Timbre of Complex Tones Only Consisting of Higher Harmonics, Proc. 15th Intern. Congress on Acoustics, Trondheim, Norway 1995, 509–512

    Google Scholar 

  21. Wieczorkowska A., The recognition efficiency of musical instrument sounds depending on parameterization and type of a classifier (in Polish), Ph.D. Dissertation, Technical University of Gdansk, 1999

    Google Scholar 

  22. Wieczorkowska A., Towards Musical Data Classification via Wavelet Analysis, in: Foundations of Intelligent Systems, Proceedings of ISMIS’00, Charlotte, NC, (Z. W. Ras, S. Ohsuga, Eds.), LNCS/LNAI, No. 1932, Springer-Verlag, 2000, 292–300

    Chapter  Google Scholar 

  23. Zwicker E., Zwicker U. T., Audio Engineering and Psychoacoustics: Matching Signals to the Final Receiver, the Human Auditory System, J. Audio Eng. Soc., Vol. 39, No. 3, March 1991, 115–126

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wieczorkowska, A.A., Raś, Z.W. (2001). Audio Content Description in Sound Databases. In: Zhong, N., Yao, Y., Liu, J., Ohsuga, S. (eds) Web Intelligence: Research and Development. WI 2001. Lecture Notes in Computer Science(), vol 2198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45490-X_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-45490-X_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42730-8

  • Online ISBN: 978-3-540-45490-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics