Skip to main content

Pose-Independent Object Representation by 2-D Views

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1811))

Included in the following conference series:

Abstract

We here describe a view-based system for the pose-independent representation of objects without making reference to 3-D models. Input to the system is a collection of pictures covering the viewing sphere with no pose information being provided. We merge pictures into a continuous pose-parameterized coverage of the viewing sphere. This can serve as a basis for pose-independent recognition and for the reconstruction of object aspects from arbitrary pose. Our data format for individual pictures has the form of graphs labeled with Gabor jets. The object representation is constructed in two steps. Local aspect representations are formed from clusters of similar views related by point correspondences. Principal component analysis (PCA) furnishes parameters that can be mapped onto pose angles. A global representation is constructed by merging these local aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mark Becker, Efthimia Kefalea, Eric Maël, Christoph von der Malsburg, Mike Pagel, Jochen Triesch, Jan C. Vorbrüggen, Rolf P. Würtz, and Stefan Zadel. GripSee: A Gesture-controlled Robot for Object Perception and Manipulation. Autonomous Robots, 6(2):203–221, 1999.

    Article  MATH  Google Scholar 

  2. Suzanna Becker. Implicit learning in 3d object recognition: The importance of temporal context. Neural Computation, 11(2):347–374, 1999.

    Article  Google Scholar 

  3. H.H. Bülthoff and S. Edelman. Psychophysical support for a 2-d view interpolation theory of object recognition. Proceedings of the National Academy of Science, 89:60–64, 1992.

    Article  Google Scholar 

  4. D.J. Fleet, A.D. Jepson, and M.R.M. Jenkin. Phase-based disparity measurement. Image Understanding, 53(2):198–210, 1991.

    Article  MATH  Google Scholar 

  5. Christian Eckes and Jan C. Vorbrüggen. Combining Data-Driven and Model-Based Cues for Segmentation of Video Sequences. In Proceedings WCNN96, pages 868–875, San Diego, CA, USA, 16–18 September, 1996. INNS Press & Lawrence Erlbaum Ass.

    Google Scholar 

  6. Philip J. Kellman. Perception of three-dimensional form by human infants. Perception & Psychophysics, 36(4):353–358, 1984.

    Google Scholar 

  7. Philip J. Kellman and Kenneth R. Short. Development of three-dimensional form perception. Journal of Experimental Psychology: Human Perception and Performace, 13(4):545–557, 1987.

    Article  Google Scholar 

  8. J. B. Kruskal. The relationship between multidimensional scaling and clustering. In J. Van Ryzin, editor, Classification and clustering, pages 17–44. Academic Press, New York, 1977.

    Google Scholar 

  9. M. Lades, J. C. Vorbrüggen, J. Buhmann, J. Lange, C. von der Malsburg, R. P. Würtz, and W. Konen. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 42:300–311, 1993.

    Article  Google Scholar 

  10. Andreas Lanitis, Chris J. Taylor, and Timothy F. Cootes. Automatic interpretation and coding of face images using flexible models. IEEE Trans. PAMI, 197:743–756, 1997.

    Google Scholar 

  11. K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Academic Press, 1989.

    Google Scholar 

  12. K Okada, S Akamatsu, and C von der Malsburg. Analysis and synthesis of pose variations of human faces by a linear pcmap model and its application for pose-invariant face recognition system. In Fourth International Conference on Automatic Face and Gesture Recognition, March 26–30, 2000, Grenoble, 2000.

    Google Scholar 

  13. Gabriele Peters. The Interpolation Between Unsimilar Views of a 3-D Object Increases the Similarity and Decreases the Significance of Local Phase. In Proceedings of the International School of Biophysics, Naples, Italy, October 11–16, 1999.

    Google Scholar 

  14. RN Shepard and J Metzler. Mental rotation of three dimensional objects. Science, 171:701–703, 1971.

    Article  Google Scholar 

  15. J. B. Tenenbaum. Mapping a manifold of perceptual observations. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing, volume 10, pages 682–688. MIT Press, 1998.

    Google Scholar 

  16. J. Triesch and C. Eckes. Object recognition with multiple feature types. In ICANN’98, Proceedings of the 8th International Conference on Artificial Neural Networks, pages 233–238. Springer, 1998.

    Google Scholar 

  17. J. Triesch and C. v.d. Malsburg. Robust classification of hand postures against complex backgrounds. In Proceedings of the Second International Conference on Automatic Face and Gesture Recognition 1996, Killington, Vermont, USA, 1996.

    Google Scholar 

  18. S Ullman and R Basri. Recognition by linear combinations of models. AI Memo 1152, Artificial Intelligence Laboratory, MIT, 1989.

    Google Scholar 

  19. Jan C. Vorbrüggen. Zwei Modelle zur datengetriebenen Segmentierung visueller Daten, volume 47 of Reihe Physik. Verlag Harri Deutsch, Thun, Frankfurt am Main, 1995.

    MATH  Google Scholar 

  20. Guy Wallis and Heinrich Bülthoff. Learning to recognize objects. Trends in Cognitive Sciences, 3(1):22–31, 1999.

    Article  Google Scholar 

  21. Gang Wang, Keiji Tanaka, and Manabu Tanifuji. Optical imaging of functional organization in the monkey inferotemoporal cortex. Science, 272:1665–1668, 1996.

    Article  Google Scholar 

  22. L. Wiskott, J.-M. Fellous, N. Krüger, and C. v.d. Malsburg. Face recognition by elastic graph matching. IEEE Trans. PAMI, 197, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wieghardt, J., von der Malsburg, C. (2000). Pose-Independent Object Representation by 2-D Views. In: Lee, SW., Bülthoff, H.H., Poggio, T. (eds) Biologically Motivated Computer Vision. BMCV 2000. Lecture Notes in Computer Science, vol 1811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45482-9_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-45482-9_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67560-0

  • Online ISBN: 978-3-540-45482-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics