Skip to main content

Spanning Trees with Bounded Number of Branch Vertices

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Abstract

We introduce the following combinatorial optimization problem: Given a connected graph G, find a spanning tree T of G with the smallest number of branch vertices (vertices of degree 3 or more in T). The problem is motivated by new technologies in the realm of optical networks. We investigate algorithmic and combinatorial aspects of the problem.

Research of the first and fourth authors was partially supported by the European Community under the RTN project: “Approximation and Randomized Algorithms in Communication NEtworks (ARACNE)”, and by the Italian Ministry of Education, University, and Research under the PRIN project: “REsource ALlo-CATION in WIreless NEtworks (REALWINE)”; the third author is on a Pacific Institute of the Mathematical Sciences postdoctoral fellowship at the School of Computing Science, Simon Fraser University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ali, Transmission Efficient Design and Management of Wavelength-Routed Optical Networks, Kluwer Academic Publishing, 2001.

    Google Scholar 

  2. C. Bazgan, M. Shanta, Z. Tuza, “On the Approximability of Finding A(nother) Hamiltonian Cycle in Cubic Hamiltonian Graphs”, Proc. 15th Annual Symposium on Theoretical Aspects of Computer Science, LNCS, Vol. 1373, 276–286, Springer, (1998).

    Google Scholar 

  3. B. Beauquier, J-C. Bermond, L. Gargano, P. Hell, S. Perennes, U. Vaccaro, “Graph Problems arising from Wavelength-Routing in All-Optical Networks”, Proc. of WOCS, Geneve, Switzerland, 1997.

    Google Scholar 

  4. G. Chen, R. H. Schelp, “Hamiltonicity for K1, r-free graphs”, J. Graph Th., 20, 423–439, 1995.

    Article  Google Scholar 

  5. V. Chvátal, P. Erdős. “A note on Hamiltonian circuits”, Discr. Math., 2:111–113, 1972.

    Article  MATH  Google Scholar 

  6. G. A. Dirac, “Some theorems on abstract graphs”, Proc. London Math. Soc. 2:69–81, 1952.

    Article  MathSciNet  Google Scholar 

  7. T. Feder, R. Motwani, C. Subi, “Finding Long Paths and Cycles in Sparse Hamiltonian Graphs”, Proc. Thirty second annual ACM Symposium on Theory of Computing (STOC’00) Portland, Oregon, May 21–23, 524–529, ACM Press, 2000.

    Google Scholar 

  8. L. Gargano, U. Vaccaro, “Routing in All-Optical Networks: Algorithmic and Graph-Theoretic Problems”, in: Numbers, Information and Complexity, I. Al-thofer et al. (Eds.), Kluwer Academic Publisher, pp. 555–578, Feb. 2000.

    Google Scholar 

  9. R. J. Gould. Updating the Hamiltonian problem—a survey. J. Graph Theory, 15(2):121–157, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. M. Karp, “Reducibility among combinatorial problems”, Complexity of Computer Computations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, (1972), 85–103.

    Google Scholar 

  11. S. Khuller, B. Raghavachari, N. Young, “Low degree spanning trees of small weight”, SIAM J. Comp., 25 (1996), 335–368.

    MathSciNet  Google Scholar 

  12. J. Könemann, R. Ravi, “A Matter of Degree: Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees”, Proc. Thirty second annual ACM Symp. on Theory of Computing (STOC’00), Portland, Oregon, 537–546, (2000).

    Google Scholar 

  13. D. Krager, R. Motwani, D.S. Ramkumar, “On Approximating the Longest Path in a Graph”, Algorithmica, 18 (1997), 82–98.

    Article  MathSciNet  Google Scholar 

  14. A. Kyaw, “A Sufficient Condition for a Graph to have a k Tree”, Graphs and Combinatorics, 17: 113–121, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Las Vergnas, “Sur une proprieté des arbres maximaux dans un graphe”, Compte Rendus Acad. Sc. Paris, 271, serie A, 1297–1300, 1971.

    Google Scholar 

  16. Y. Liu, F. Tian, and Z. Wu, “Some results on longest paths and cycles in K1,3-free graphs”, J. Changsha Railway Inst., 4:105–106, 1986.

    Google Scholar 

  17. L. R. Markus. Hamiltonian results in K1, r-free graphs. In Proc. of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton,FL, 1993), volume 98, pages 143–149, 1993.

    MATH  MathSciNet  Google Scholar 

  18. M. M. Matthews, D. P. Sumner. Longest paths and cycles in K1,3-free graphs. J. Graph Theory, 9(2):269–277, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Mukherjee, Optical Communication Networks, McGraw-Hill, New York, 1997.

    Google Scholar 

  20. V. Neumann Lara, E. Rivera-Campo, “Spanning trees with bounded degrees”, Combinatorica, 11(1):55–61, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  21. O. Ore. Note on Hamilton circuits. Amer. Math. Monthly, 67:55, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Raghavari, “Algorithms for finding low-degree structures”, in: Approximation Algorithms for NP-Hard Problems, D.S. Hochbaum (Ed.) PWS Publishing Company, Boston, 266–295, 1997.

    Google Scholar 

  23. L. Sahasrabuddhe, N. Singhal, B. Mukherjee, “Light-Trees for WDM Optical Networks: Optimization Problem Formulations for Unicast and Broadcast Traffic,“ Proc. Int. Conf. on Communications, Computers, and Devices (ICCD-2000), IIT Kharagpur, India, (2000).

    Google Scholar 

  24. L. H. Sahasrabuddhe, B. Mukherjee, “Light Trees: Optical Multicasting for Improved Performance in Wavelength-Routed Networks“, IEEE Comm. Mag., 37: 67–73, 1999.

    Article  Google Scholar 

  25. T.E. Sterne, K. Bala, MultiWavelength Optical Networks, Addison-Wesley, 1999.

    Google Scholar 

  26. C. Thomassen, “Hypohamiltonian and hypotraceable graphs”, Disc. Math., 9(1974), 91–96.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Thomassen, “Planar cubic hypo-Hamiltonian and hypotraceable graphs”, J. Combin. Theory Ser. B, 30(1), 36–44, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  28. Y. Wang, Y. Yang, “Multicasting in a Class of Multicast—Capable WDM Networks”, Journal of Lightwave Technology, 20 (2002), 350–359.

    Article  Google Scholar 

  29. S. Win, “Existenz von Gerüsten mit vorgeschriebenem Maximalgrad in Graphen”, Abh. Mat. Sem. Univ. Hamburg, 43: 263–267, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  30. X. Zhang, J. Wei, C. Qiao, “Costrained Multicast Routing in WDM Networks with Sparse Light Splitting”, Proc. of IEEE INFOCOM 2000, vol. 3: 1781–1790, Mar. 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gargano, L., Hell, P., Stacho, L., Vaccaro, U. (2002). Spanning Trees with Bounded Number of Branch Vertices. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics