Skip to main content

Quantum and Stochastic Branching Programs of Bounded Width

Track A

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Included in the following conference series:

Abstract

We prove upper and lower bounds on the power of quantum and stochastic branching programs of bounded width. We show any NC1 language can be accepted exactly by a width-2 quantum branching program of polynomial length, in contrast to the classical case where width 5 is necessary unless NC1 = ACC. This separates width-2 quantum programs from width-2 doubly stochastic programs as we show the latter cannot compute the middle bit of multiplication. Finally, we show that bounded-width quantum and stochastic programs can be simulated by classical programs of larger but bounded width, and thus are in NC1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Ablayev, A. Gainutdinova, and M. Karpinski. On computational Power of quantum branching programs. Proc. FCT 2001, Lecture Notes in Computer Science 2138: 59–70, 2001.

    Google Scholar 

  2. F. Ablayev and M. Karpinski. A lower bound for integer multiplication on randomized read-once branching programs. Electronic Colloquium on Computational Complexity TR 98-011, 1998. http://www.eccc.uni-trier.de/eccc

  3. P. Alexandrov. Introduction to set theory and general topology. Berlin, 1984.

    Google Scholar 

  4. A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths, weakness, and generalizations. Proc. 39th IEEE Symp. on Foundations of Computer Science (FOCS), 332–342, 1998.

    Google Scholar 

  5. A. Ambainis, L. Schulman, and U. Vazirani. Computing with Highly Mixed States. Proc. 32nd Annual ACM Symp. on Theory of Computing (STOC), 697–704, 2000.

    Google Scholar 

  6. D.A. Barrington. Bounded-width polynomial branching programs recognize exactly those languages in NC1. Journal of Computer and System Sciences 38(1): 150–164, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  7. D.A. Barrington and D. Therien. Finite Monoids and the Fine Structure of NC1 Journal of the ACM 35(4): 941–952, 1988.

    Article  MathSciNet  Google Scholar 

  8. A. Kondacs and J. Watrous On the power of quantum finite automata. Proc. of the 38th IEEE Symp. on Foundations of Computer Science (FOCS), 66–75, 1997.

    Google Scholar 

  9. C. Moore and J.P. Crutchfield. Quantum automata and quantum grammars. Theoretical Computer Science 237: 275–306, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Moore, D. Thérien, F. Lemieux, J. Berman, and A. Drisko. Circuits and Expressions with Non-Associative Gates. Journal of Computer and System Sciences 60: 368–394, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Nakanishi, K. Hamaguchi, and T. Kashiwabara. Ordered quantum branching programs are more powerful than ordered probabilistic branching programs under a bounded-width restriction. Proc. 6th Annual International Conference on Computing and Combinatorics (COCOON) Lecture Notes in Computer Science 1858: 467–476, 2000.

    Google Scholar 

  12. M.A. Nielson and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press. 2000.

    Google Scholar 

  13. M. Rabin. Probabilistic automata. Information and Control 6: 230–245, 1963.

    Article  Google Scholar 

  14. P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5): 1484–1509, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  15. Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM Monographs on Discrete Mathematics and Applications. 2000.

    Google Scholar 

  16. A.C. Yao. Lower Bounds by Probabilistic Arguments Proc. of the 24th IEEE Symp. on Foundations of Computer Science (FOCS), 420–428, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ablayev, F., Moore, C., Pollett, C. (2002). Quantum and Stochastic Branching Programs of Bounded Width. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics