Time is Money

  • Marcel Ausloos
  • Nicolas Vandewalle
  • Kristinka Ivanova
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 550)


Specialized topics on financial data analysis from a numerical and physical point of view are discussed when pertaining to the analysis of coherent and random sequences in financial fluctuations within (i) the extended detrended fluctuation analysis method, (ii) multi-affine analysis technique, (iii) mobile average intersection rules and distributions, (iv) sandpile avalanches models for crash prediction, (v) the (m, k)-Zipf method and (vi) the i-variability diagram technique for sorting out short range correlations. The most baffling result that needs further thought from mathematicians and physicists is recalled: the crossing of two mobile averages is an original method for measuring the ”signal” roughness exponent, but why it is so is not understood up to now.


Brownian Motion Fractal Dimension Fractional Brownian Motion Hurst Exponent Detrended Fluctuation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bachelier, Théorie de la spéculation, Ph. D. thesis, Acad. Paris (1900)Google Scholar
  2. 2.
    R.N. Mantegna and H.E. Stanley Nature, 376, 46–49 (1995)CrossRefADSGoogle Scholar
  3. 3.
    E.E. Peters, Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, (Wiley Finance Edition, New York, 1994)Google Scholar
  4. 4.
    M. Ausloos, Europhys. News 29, 70–72 (1998)Google Scholar
  5. 5.
    N. Vandewalle and M. Ausloos, in Fractals and Beyond. Complexity in the Sciences, M.M. Novak, Ed. (World Scient., Singapore, 1999) p.355–356.Google Scholar
  6. 6.
    N. Vandewalle and M. Ausloos, Physica A, 246, 454–459 (1997)CrossRefADSGoogle Scholar
  7. 7.
    N. Vandewalle, Ph. Boveroux, A. Minguet and M. Ausloos, Physica A 255, 201–210 (1998)CrossRefGoogle Scholar
  8. 8.
    H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng and M. Simmons, Physica A 200, 4–24 (1996)CrossRefADSGoogle Scholar
  9. 9.
    N. Vandewalle and M. Ausloos, Int. J. Comput. Anticipat. Syst. 1, 342–349 (1998)Google Scholar
  10. 10.
    B. J. West and B. Deering, The Lure of Modern Science: Fractal Thinking, (World Scient., Singapore, 1995)CrossRefGoogle Scholar
  11. 11.
    C.-K. Peng, J.M. Hausdor., S. Havlin, J.E. Mietus, H.E. Stanley, and A.L. Goldberger, Physica A 249, 491–500 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Schroeder, Fractals, Chaos and Power Laws, (W.H. Freeman and Co., New York, 1991)Google Scholar
  13. 13.
    K. J. Falconer, The Geometry of Fractal Sets, (Cambridge Univ. Press, Cambridge, 1985)zbMATHCrossRefGoogle Scholar
  14. 14.
    P. S. Addison, Fractals and Chaos, (Inst. of Phys., Bristol, 1997)zbMATHGoogle Scholar
  15. 15.
    K. Ivanova, unpublished Google Scholar
  16. 16.
    N. Vandewalle and M. Ausloos, Int. J. Phys. C 9, 711–720 (1998)CrossRefADSGoogle Scholar
  17. 17.
    K. Ivanova and M. Ausloos, Eur. J. Phys. B 8 665–669 (1999)CrossRefADSGoogle Scholar
  18. 18.
    N. Vandewalle and M. Ausloos, Eur. J. Phys. B 4, 257–261 (1998)CrossRefADSGoogle Scholar
  19. 19.
    A. L. Barabási and T. Vicsek, Phys. Rev. A 44, 2730–2733 (1991)CrossRefADSGoogle Scholar
  20. 20.
    A. Davis, A. Marshak, and W. Wiscombe, in Wavelets in Geophysics, E. Foufoula-Georgiou and P. Kumar, Eds. (Academic Press, New York, 1994) pp. 249–298Google Scholar
  21. 21.
    A. Marshak, A. Davis, R. Cahalan, and W. Wiscombe Phys. Rev. E 49, 55–69 (1994)CrossRefADSGoogle Scholar
  22. 22.
    A.-L. Barabási and H.E. Stanley, Fractal Concepts in Surface Growth, (Cambridge Univ. Press, Cambridge, 1995)zbMATHCrossRefGoogle Scholar
  23. 23.
    J. Feder, Fractals, (Plenum, New-York, 1988)zbMATHGoogle Scholar
  24. 24.
    E. Labie, private communication Google Scholar
  25. 25.
    A.G. Ellinger, The Art of Investment, (Bowers & Bowers, London, 1971)Google Scholar
  26. 26.
    J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127–294 (1990)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    N. Vandewalle and M. Ausloos, Phys. Rev. E 58, 6832–6834 (1998)CrossRefADSGoogle Scholar
  28. 28.
    L. Frachebourg, P.L. Krapivsky, and S. Redner, Phys. Rev. E 55, 6684–6689 (1997)CrossRefADSGoogle Scholar
  29. 29.
    D. Sornette, A. Johansen, and J.-Ph. Bouchaud, J. Phys. I (France) 6, 167–175 (1996)CrossRefGoogle Scholar
  30. 30.
    H.E. Stanley, Phase Transitions and Critical Phenomena, (Oxford Univ. Press, Oxford, 1971)Google Scholar
  31. 31.
    D. Sornette, Physics Reports 297, 239–270 (1998)CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    J.C. Anifrani, C. Le Floc’h, D. Sornette and B. Souillard, J. Phys. I (France) 5, 631–63 (1995) 277CrossRefGoogle Scholar
  33. 33.
    D. Stauffer and D. Sornette, Physica A 252, 271-(1998)CrossRefGoogle Scholar
  34. 34.
    N. Vandewalle, R. D’hulst, and M. Ausloos, Phys. Rev. E 59, 631–635 (1999)CrossRefADSGoogle Scholar
  35. 35.
    M. Ausloos and N. Vandewalle, unpublished Google Scholar
  36. 36.
    N. Vandewalle and M. Ausloos, Eur. J. Phys. B 4, 139–141 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    H. Dupuis, Trends Tendances 22(38), (september 18, 1997) p.26–27Google Scholar
  38. 38.
    H. Dupuis, Trends Tendances 22(44), (october 30, 1997) p.11Google Scholar
  39. 39.
    D. Daoût, Le Vif L’Express (october 30, 1997) p.124–125Google Scholar
  40. 40.
    D. Sornette and D. Stauffer, private communicaion Google Scholar
  41. 41.
    J.-Ph. Bouchaud, P. Cizeau, L. Laloux, and M. Potters, Phys. World 12, 25–29 (1999)ADSGoogle Scholar
  42. 42.
    L. Laloux, M. Potters, R. Cont, J.-P. Aguilar, and J.-P. Bouchaud, Europhys. Lett. 45, 1–5 (1999)CrossRefADSGoogle Scholar
  43. 43.
    J.R. Macdonald and M. Ausloos, Physica A 242, 150–160 (1997)CrossRefADSGoogle Scholar
  44. 44.
    M. Ausloos, J. Phys. A 22, 593–609 (1989)CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    G.K. Zipf, Human Behavior and the Principle of Least Effort, (Addisson-Wesley, Cambridge, MA, 1949)Google Scholar
  46. 46.
    W. Ebeling and A. Neiman, Physica A 215, 233–241 (1995)CrossRefADSGoogle Scholar
  47. 47.
    B. Vilensky Physica A 231, 705–711 (1996)CrossRefADSGoogle Scholar
  48. 48.
    M.H.R. Stanley, S.V. Buldyrev, S. Havlin, R.N. Mantegna, M.A. Salinger, and H.E. Stanley, Ecomonics Letters, 49, 453–457 (1995)zbMATHCrossRefGoogle Scholar
  49. 49.
    K. Ivanova, M. Ausloos, A. Davis, and T. Ackerman, XXIV General Assembly of the EGS, the Hague, Netherlands, April 19–23 (1999)Google Scholar
  50. 50.
    M. Marsili and Y.-C. Zhang, Phys. Rev. Lett. 80, 2741–2744 (1998)CrossRefADSGoogle Scholar
  51. 51.
    N. Vandewalle and M. Ausloos, unpublished Google Scholar
  52. 52.
    M. S. Watanabe Phys. Rev. E 53, 4187–4190 (1996)CrossRefADSGoogle Scholar
  53. 53.
    A. Czirok, R.N. Mantegna, S. Havlin, and H.E. Stanley, Phys. Rev. E 52, 446–452 (1995)CrossRefADSGoogle Scholar
  54. 54.
    G. Troll and P.B. Graben, Phys. Rev. E 57, 1347–1355 (1998)CrossRefADSGoogle Scholar
  55. 55.
    A. Babloyantz and P. Maurer, Phys. Lett. A 221, 43–55 (1996)CrossRefADSGoogle Scholar
  56. 56.
    K. Ivanova and M. Ausloos, Physica A 265, 279–286 (1999).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Marcel Ausloos
    • 1
  • Nicolas Vandewalle
    • 1
  • Kristinka Ivanova
    • 2
    • 3
  1. 1.SUPRAS and GRASP, Institut de Physique B5Université de LiègeLiègeBelgium
  2. 2.Department of MeteorologyPennsylvania State UniversityUniversity ParkUSA
  3. 3.Institute of ElectronicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations