Stochastic Resonance and the Benefit of Noise in Nonlinear Systems

  • François Chapeau-Blondeau
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 550)


Stochastic resonance is a nonlinear effect wherein the noise turns out to be beneficial to the transmission or detection of an information-carrying signal. This paradoxical effect has now been reported in a large variety of nonlinear systems, including electronic circuits, optical devices, material-physics phenomena, neuronal systems, chemical reactions. Stochastic resonance can take place under various forms, according to the types considered for the noise, for the informationcarrying signal, for the nonlinear system realizing the transmission or detection, and for the quantitative measure of performance receiving improvement from the noise. These elements will be discussed here so as to provide a general overview of the effect. Various examples will be treated that illustrate typical types of signals and nonlinear systems that can give rise to stochastic resonance. Various measures to quantify stochastic resonance will also be presented, together with analytical approaches for the theoretical prediction of the effect. For instance, we shall describe systems where the output signal-to-noise ratio or the input-output information capacity increase when the noise level is raised. Also temporal signals as well as images will be considered. Perspectives on current developments on stochastic resonance will be evoked.


Mutual Information Physical Review Stochastic Resonance Physical Review Letter Bistable System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Anishchenko, M. A. Safonova, and L. O. Chua. Stochastic resonance in Chua’s circuit driven by amplitude or frequency modulated signals. International Journal of Bifurcation and Chaos, 4:441–446, 1994.zbMATHCrossRefGoogle Scholar
  2. 2.
    R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. Stochastic resonance in climatic changes. Tellus, 34:10–16, 1982.ADSCrossRefGoogle Scholar
  3. 3.
    S. M. Bezrukov and I. Vodyanoy. Stochastic resonance in non-dynamical systems without response thresholds. Nature, 385:319–321, 1997.CrossRefADSGoogle Scholar
  4. 4.
    A. Bulsara, E. W. Jacobs, T. Zhou, F. Moss, and L. Kiss. Stochastic resonance in a single neuron model: Theory and analog simulation. Journal of Theoretical Biology, 152:531–555, 1991.CrossRefGoogle Scholar
  5. 5.
    A. R. Bulsara and A. Zador. Threshold detection of wideband signals: A noisecontrolled maximum in the mutual information. Physical Review E, 54:R2185–R2188, 1996.CrossRefADSGoogle Scholar
  6. 6.
    F. Chapeau-Blondeau. Stochastic resonance in the Heaviside nonlinearity with white noise and arbitrary periodic signal. Physical Review E, 53:5469–5472, 1996.CrossRefADSGoogle Scholar
  7. 7.
    F. Chapeau-Blondeau. Input-output gains for signal in noise in stochastic resonance. Physics Letters A, 232:41–48, 1997.CrossRefADSGoogle Scholar
  8. 8.
    F. Chapeau-Blondeau. Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel. Physical Review E, 55:2016–2019, 1997.CrossRefADSGoogle Scholar
  9. 9.
    F. Chapeau-Blondeau. Periodic and aperiodic stochastic resonance with output signal-to-noise ratio exceeding that at the input. International Journal of Bifurcation and Chaos, 9:267–272, 1999.zbMATHCrossRefGoogle Scholar
  10. 10.
    F. Chapeau-Blondeau and X. Godivier. Stochastic resonance in nonlinear transmission of spike signals: An exact model and an application to the neuron. International Journal of Bifurcation and Chaos, 6:2069–2076, 1996.CrossRefGoogle Scholar
  11. 11.
    F. Chapeau-Blondeau and X. Godivier. Theory of stochastic resonance in signal transmission by static nonlinear systems. Physical Review E, 55:1478–1495, 1997.CrossRefADSGoogle Scholar
  12. 12.
    F. Chapeau-Blondeau, X. Godivier, and N. Chambet. Stochastic resonance in a neuron model that transmits spike trains. Physical Review E, 53:1273–1275, 1996.CrossRefADSGoogle Scholar
  13. 13.
    D. R. Chialvo, A. Longtin, and J. Mullergerking. Stochastic resonance in models of neuronal ensembles. Physical Review E, 55:1798–1808, 1997.CrossRefADSGoogle Scholar
  14. 14.
    J. J. Collins, C. C. Chow, A. C. Capela, and T. T. Imho.. Aperiodic stochastic resonance. Physical Review E, 54:5575–5584, 1996.CrossRefADSGoogle Scholar
  15. 15.
    J. J. Collins, C. C. Chow, and T. T. Imho.. Aperiodic stochastic resonance in excitable systems. Physical Review E, 52:R3321–R3324, 1995.CrossRefADSGoogle Scholar
  16. 16.
    T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York, 1991.zbMATHCrossRefGoogle Scholar
  17. 17.
    G. Deco and B. Schürmann. Stochastic resonance in the mutual information between input and output spike trains of noisy central neurons. Physica D, 117:276–282, 1998.zbMATHCrossRefADSGoogle Scholar
  18. 18.
    J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 365:337–340, 1993.CrossRefADSGoogle Scholar
  19. 19.
    M. I. Dykman, G. P. Golubev, I. K. Kaufman, D. G. Luchinsky, P. V. E. McClintock, and E. A. Zhukov. Noise-enhanced optical heterodyning in an all-optical bistable system. Applied Physics Letters, 67:308–310, 1995.CrossRefADSGoogle Scholar
  20. 20.
    M. I. Dykman, H. Haken, G. Hu, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, C. Z. Ning, N. D. Stein, and N. G. Stocks. Linear response theory in stochastic resonance. Physics Letters A, 180:332–336, 1993.CrossRefADSGoogle Scholar
  21. 21.
    M. I. Dykman, T. Horita, and J. Ross. Statistical distribution and stochastic resonance in a periodically driven chemical system. Journal of Chemical Physics, 103:966–972, 1995.CrossRefADSGoogle Scholar
  22. 22.
    M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N. D. Stein, and N. G. Stocks. Stochastic resonance: Linear response theory and giant nonlinearity. Journal of Statistical Physics, 70:463–478, 1993.CrossRefADSGoogle Scholar
  23. 23.
    M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N. D. Stein, and N. G. Stocks. Stochastic resonance in perspective. Nuovo Cimento, 17D:661–683, 1995.CrossRefADSGoogle Scholar
  24. 24.
    S. Fauve and F. Heslot. Stochastic resonance in a bistable system. Physics Letters A, 97:5–7, 1983.CrossRefADSGoogle Scholar
  25. 25.
    L. Gammaitoni. Stochastic resonance and the dithering effect in threshold physical systems. Physical Review E, 52:4691–4698, 1995.CrossRefADSGoogle Scholar
  26. 26.
    L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni. Stochastic resonance. Reviews of Modern Physics, 70:223–287, 1998.CrossRefADSGoogle Scholar
  27. 27.
    L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S. Santucci. Stochastic resonance in bistable systems. Physical Review Letters, 62:349–352, 1989.CrossRefADSGoogle Scholar
  28. 28.
    L. Gammaitoni, M. Martinelli, L. Pardi, and S. Santucci. Observation of stochastic resonance in bistable electron-paramagnetic-resonance systems. Physical Review Letters, 67:1799–1802, 1991.CrossRefADSGoogle Scholar
  29. 29.
    C. W. Gardiner. Handbook of Stochastic Methods. Springer, Berlin, 1985.Google Scholar
  30. 30.
    X. Godivier and F. Chapeau-Blondeau. Noise-enhanced transmission of spike trains in the neuron. Europhysics Letters, 35:473–477, 1996.CrossRefADSGoogle Scholar
  31. 31.
    X. Godivier and F. Chapeau-Blondeau. Noise-assisted signal transmission in a nonlinear electronic comparator: Experiment and theory. Signal Processing, 56:293–303, 1997.zbMATHCrossRefGoogle Scholar
  32. 32.
    X. Godivier and F. Chapeau-Blondeau. Stochastic resonance in the information capacity of a nonlinear dynamic system. International Journal of Bifurcation and Chaos, 8:581–590, 1998.zbMATHCrossRefGoogle Scholar
  33. 33.
    X. Godivier, J. Rojas-Varela, and F. Chapeau-Blondeau. Noise-assisted signal transmission via stochastic resonance in a diode nonlinearity. Electronics Letters, 33:1666–1668, 1997.CrossRefGoogle Scholar
  34. 34.
    R. M. Gray and T. G. Stockham. Dithered quantizers. IEEE Transactions on Information Theory, IT-39:805–812, 1993.zbMATHCrossRefGoogle Scholar
  35. 35.
    A. N. Grigorenko and P. I. Nikitin. Magnetostochastic resonance as a new method for investigations of surface and thin film magnetism. Applied Surface Science, 92:466–470, 1996.CrossRefADSGoogle Scholar
  36. 36.
    C. Heneghan, C. C. Chow, J. J. Collins, T. T. Imho., S. B. Lowen, and M. C. Teich. Information measures quantifying aperiodic stochastic resonance. Physical Review E, 54:R2228–R2231, 1996.CrossRefADSGoogle Scholar
  37. 37.
    A. D. Hibbs, A. L. Singsaas, E. W. Jacobs, A. R. Bulsara, J. J. Bekkedahl, and F. Moss. Stochastic resonance in a superconducting loop with a Josephson junction. Journal of Applied Physics, 77:2582–2590, 1995.CrossRefADSGoogle Scholar
  38. 38.
    W. Hohmann, J. Muller, and F. W. Schneider. Stochastic resonance in chemistry: The minimal bromate reaction. Journal of Physical Chemistry, 100:5388–5392, 1996.CrossRefGoogle Scholar
  39. 39.
    G. Hu, G. Nicolis, and C. Nicolis. Periodically forced Fokker-Planck equation and stochastic resonance. Physical Review A, 42:2030–2041, 1990.CrossRefADSGoogle Scholar
  40. 40.
    J. M. Iannelli, A. Yariv, T. R. Chen, and Y. H. Zhuang. Stochastic resonance in a semiconductor distributed feedback laser. Applied Physics Letters, 65:1983–1985, 1994.CrossRefADSGoogle Scholar
  41. 41.
    B. M. Jost and B. E. A. Saleh. Signal-to-noise ratio improvement by stochastic resonance in a unidirectional photorefractive ring resonator. Optics Letters, 21:287–289, 1996.ADSCrossRefGoogle Scholar
  42. 42.
    P. Jung and P. Hänggi. Stochastic nonlinear dynamics modulated by external periodic forces. Europhysics Letters, 8:505–510, 1989.CrossRefADSGoogle Scholar
  43. 43.
    P. Jung and P. Hänggi. Amplification of small signal via stochastic resonance. Physical Review A, 44:8032–8042, 1991.CrossRefADSGoogle Scholar
  44. 44.
    L. B. Kiss, Z. Gingl, Z. Márton, J. Kertész, F. Moss, G. Schmera, and A. Bulsara. 1/f noise in systems showing stochastic resonance. Journal of Statistical hysics, 70:451–462, 1993.CrossRefADSGoogle Scholar
  45. 45.
    D. S. Leonard and L. E. Reichl. Stochastic resonance in a chemical reaction. Physical Review E, 49:1734–1739, 1994.CrossRefADSGoogle Scholar
  46. 46.
    J. E. Levin and J. P. Miller. Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature, 380:165–168, 1996.CrossRefADSGoogle Scholar
  47. 47.
    J. Lindner, B. Meadows, W. Ditto, M. Inchiosa, and A. Bulsara. Array enhanced stochastic resonance and spatiotemporal synchronization. Physical Review Letters, 75:3–6, 1995.CrossRefADSGoogle Scholar
  48. 48.
    J. F. Lindner, S. Chandramouli, A. R. Bulsara, M. Löcher, and W. L. Ditto. Noise enhanced propagation. Physical Review Letters, 81:5048–5051, 1998.CrossRefADSGoogle Scholar
  49. 49.
    J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, and A. R. Bulsara. Scaling laws for spatiotemporal synchronization and array enhanced stochastic resonance. Physical Review E, 53:2081–2086, 1996.CrossRefADSGoogle Scholar
  50. 50.
    M. Löcher, D. Cigna, and E. R. Hunt. Noise sustained propagation of a signal in coupled bistable electronic elements. Physical Review Letters, 80:5212–5215, 1998.CrossRefADSGoogle Scholar
  51. 51.
    R. Löfstedt and S. N. Coppersmith. Quantum stochastic resonance. Physical Review Letters, 72:1947–1950, 1994.CrossRefADSGoogle Scholar
  52. 52.
    B. McNamara and K. Wiesenfeld. Theory of stochastic resonance. Physical Review A, 39:4854–4869, 1989.CrossRefADSGoogle Scholar
  53. 53.
    S. Mitaim and B. Kosko. Adaptive stochastic resonance. Proceedings of the IEEE, 86:2152–2183, 1998.Google Scholar
  54. 54.
    F. Moss, A. Bulsara, and M. F. Shlesinger, eds. Proceedings NATO Advanced Research Workshop on Stochastic Resonance in Physics and Biology. Journal of Statistical Physics, 70:1–512, 1993.Google Scholar
  55. 55.
    F. Moss, D. Pierson, and D. O’Gorman. Stochastic resonance: Tutorial and update. International Journal of Bifurcation and Chaos, 4:1383–1398, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Z. Neda. Stochastic resonance in 3D Ising ferromagnets. Physics Letters A, 210:125–128, 1996.CrossRefADSGoogle Scholar
  57. 57.
    A. Neiman, L. Schimansky-Geier, and F. Moss. Linear response theory applied to stochastic resonance in models of ensembles of oscillators. Physical Review E, 56:R9–R12, 1997.CrossRefADSGoogle Scholar
  58. 58.
    A. Neiman, B. Shulgin, V. Anishchenko, W. Ebeling, L. Schimansky-Geier, and J. Freund. Dynamical entropies applied to stochastic resonance. Physical Review Letters, 76:4299–4302, 1996.CrossRefADSGoogle Scholar
  59. 59.
    G. Nicolis, C. Nicolis, and D. McKernan. Stochastic resonance in chaotic dynamics. Journal of Statistical Physics, 70:125–139, 1993.zbMATHCrossRefADSMathSciNetGoogle Scholar
  60. 60.
    V. V. Osipov and E. V. Ponizovskaya. The nature of bursting noises, stochastic resonance and deterministic chaos in excitable neurons. Physics Letters A, 238:369–374, 1998.zbMATHCrossRefADSMathSciNetGoogle Scholar
  61. 61.
    A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York, 1991.Google Scholar
  62. 62.
    M. Riani and E. Simonotto. Stochastic resonance in the perceptual interpretation of ambiguous figures: Aneural network model. Physical Review Letters, 72:3120–3123, 1994.CrossRefADSGoogle Scholar
  63. 63.
    L. G. Roberts. Picture coding using pseudo-random noise. IRE Transactions on Information Theory, IT-8:145–154, 1962.CrossRefGoogle Scholar
  64. 64.
    J. C. Russ. The Image Processing Handbook. CRC Press, Boca Raton, 1995.Google Scholar
  65. 65.
    E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, and F. Moss. Visual perception of stochastic resonance. Physical Review Letters, 78:1186–1189, 1997.CrossRefADSGoogle Scholar
  66. 66.
    M. Spano, M. Wun-Fogle, and W. L. Ditto. Experimental observation of stochastic resonance in a magnetoelastic ribbon. Physical Review A, 46:5253–5256, 1992.CrossRefADSGoogle Scholar
  67. 67.
    M. Stemmler. Asingle spike suffices: The simplest form of stochastic resonance in model neurons. Network: Computation in Neural Systems, 7:687–716, 1996.zbMATHCrossRefGoogle Scholar
  68. 68.
    N. G. Stocks, N. D. Stein, and P. V. E. McClintock. Stochastic resonance in monostable systems. Journal of Physics A, 26:L385–L390, 1993.CrossRefADSGoogle Scholar
  69. 69.
    J. J. L. Ting. Stochastic resonance for quantum channels. Physical Review E, 59:2801–2803, 1999.CrossRefADSGoogle Scholar
  70. 70.
    J. Vanderkooy and S. P. Lipshitz. Resolution below the least significant bit in digital systems with dither. Journal of the Audio Engineering Society, 32:106–113 (correction p. 889), 1984.Google Scholar
  71. 71.
    F. Vaudelle, J. Gazengel, G. Rivoire, X. Godivier, and F. Chapeau-Blondeau. Stochastic resonance and noise-enhanced transmission of spatial signals in optics: The case of scattering. Journal of the Optical Society of America B, 15:2674–2680, 1998.ADSCrossRefGoogle Scholar
  72. 72.
    G. Vemuri and R. Roy. Stochastic resonance in a bistable ring laser. Physical Review A, 39:4668–4674, 1989.CrossRefADSGoogle Scholar
  73. 73.
    K. Wiesenfeld and F. Moss. Stochastic resonance and the benefits of noise: From ice ages to crayfish and SQUIDs. Nature, 373:33–36, 1995.CrossRefADSGoogle Scholar
  74. 74.
    T. Yang. Adaptively optimizing stochastic resonance in visual system. Physics Letters A, 245:79–86, 1998.CrossRefADSGoogle Scholar
  75. 75.
    Y. Zhang, G. Hu, and L. Gammaitoni. Signal transmission in one-way coupled bistable systems: Noise effect. Physical Review E, 58:2952–2956, 1998.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • François Chapeau-Blondeau
    • 1
  1. 1.Laboratoire d’Ingénierie des Systèmes Automatisés (LISA)Université d’AngersAngersFrance

Personalised recommendations