1/f Fluctuations in Cosmic Ray Extensive Air Showers

  • E. Faleiro
  • J.M.G. Gómez
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 550)


The fluctuations of the particle density distributions in extensive air showers have been studied at ground level. In order to achieve meaningful statistics, the interaction of cosmic rays with the earth atmosphere has been simulated by means of the CORSIKA Monte Carlo code. It is shown that the fluctuations of the particle density distributions as a function of the polar angle have features typical of a 1/f noise. The sample is then analysed in order to study its scaling behaviour and we find that it can be parametrized by means of a universal multifractal approach.


Secondary Particle Power Spectrum Density Earth Atmosphere Electromagnetic Shower Primary Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sokolsky P. (1989) Introduction to Ultrahigh Energy Cosmic Ray Physics, Addison Wesley Redwood City, CA.Google Scholar
  2. 2.
    Greisen K. (1956) in Prog. Cosmic Ray Phys. 3, 3. Kamata K. and Nishimura J. (1958) in Prog. Theoretical Phys. Suppl. 6, 93.Google Scholar
  3. 3.
    Ratti S. P. et al. (1994) Z. Phys. C, 61, 229.CrossRefADSGoogle Scholar
  4. 4.
    De Wolf E. A. et al. (1996) Phys. Rept. 270, 1.CrossRefADSGoogle Scholar
  5. 5.
    Capdevielle J.N. et al. (1992) in KfK Report 4998(Kernforsc hungzentrum, Karlsruhe).Google Scholar
  6. 6.
    HEGRA Collaboration (1997) in Proceedings of the 25th International Cosmic Ray Conference of Durban 5, 113.Google Scholar
  7. 7.
    Feller W. An introduction to probability theory and its applications Vol.II (2nd ed.), Wiley.Google Scholar
  8. 8.
    Peebles P.Z. (1987) Probability, Random Variables and Random Signal Principles (2nd ed.), McGraw-Hill.Google Scholar
  9. 9.
    M.B. Weissman (1988) Rev. Mod. Phys. 60, 537.CrossRefADSGoogle Scholar
  10. 10.
    Davis A. et al. (1994) J. Geophys. Res. 99, D4, 8055.CrossRefADSGoogle Scholar
  11. 11.
    Schertzer D. and Lovejoy S. (1991) in Scaling, Fractals and Nonlinear Variability in Geophysics, edited by Schertzer D. and Lovejoy S. (Kluwer, Holland), 41.Google Scholar
  12. 12.
    Schertzer D. and Lovejoy S. (1993) in Nonlinear Variability in Geophysics 3: Scaling and multifractal processes. (Lecture Notes NVAG3, EGS).Google Scholar
  13. 13.
    Schertzer D. et al. in XXII Colloque GRETSI, 1313–1325.Google Scholar
  14. 14.
    Lavallee D. (1991) in Ph.D. Thesis, University McGill (Montreal, Canada).Google Scholar
  15. 15.
    Schertzer D. and Lovejoy S. (1989) in Nonlinear Variability in Geophysics: Multifractal analysis and simulation. (Fractals: Physical Origin and Consequences), edited by L. Pietronero (Plenum, New York), 49–79.Google Scholar
  16. 16.
    Schertzer D. and Lovejoy S. (1987) J. Geophys. Res. 92, 9693.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • E. Faleiro
    • 1
  • J.M.G. Gómez
    • 2
  1. 1.Departamento de Física Aplicada e I.S., E.U.I.T. IndustrialUniversidad Politécnica de MadridMadridSpain
  2. 2.Departamento de Física Atómica y Nuclear, Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations