Stored Ion Manipulation Dynamics of Ion Cloud and Quantum Jumps with Single Ions

  • Fernande Vedel
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 550)


Ion storage is a powerful tool for keeping charged particles for very long times in a perturbation-free environment, a perfect system for atomic physics or frequency metrology. Due to the existing anharmonicies in the confining field, equations of the ion motion are governed by non-linear dynamics and new frequencies built on the classic rules of the frequency dynamics appears.

In addition with laser cooling, the technique allows one to develop precise investigations on microscopic systems and then very fundamental illustrations in quantum optics. Moreover, storing single ion are now a “common” to propose new frequency standards in the optical domain; however the frequency locking on the clock transition presents the originality to use the quantum jumps detection. The paper will essentially present some highlights in connection with the research undertaken at PIIM.


Frequency Standard Laser Cool Mathieu Equation Optical Domain Clock Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.C. Thompson, Spectroscopy of Trapped Ions, Adv. Atom. Molec. Opt. Phys. 31, 63 (1993) and R. Blatt, Atomic Physics 14, D.J. Wineland, C.E. Wieman and S.J. Smith (eds), Am. Inst. of Physics, New York (1995).Google Scholar
  2. 2.
    W. Paul, O. Osberghaus and E. Fischer, Forschungsberichte des Wirtschaftsund Verkehrs-ministeriums, Nordrhein-Westfalen, n°415, West-deutscher Verlag, Kvln und Opladen (1958).Google Scholar
  3. 3.
    M. Vedel, M. Knoop, D. Lunney, I. Rebatel and F. Vedel, Phys. Rev. A 51,2294 (1995).CrossRefADSGoogle Scholar
  4. 4.
    J. Rocher, M. Vedel and F. Vedel, Int. J. Mass Spectrom. Ion Processes,181,173 (1998).Google Scholar
  5. 5.
    F.G. Major and J.L. Duchêne, J. Phys. 36, 953 (1975).Google Scholar
  6. 6.
    R.H. Dicke, Phys. Rev. 89, 472–473 (1953).CrossRefADSGoogle Scholar
  7. 7.
    A.J. Lichtenberg and M.A. Lieberman, “Regular and Stochastic Motion”, Springer, NY. (1983).zbMATHGoogle Scholar
  8. 8.
    F. Vedel, Int. J. Mass Spectrom. Ion Processes, 106,33 (1991).CrossRefGoogle Scholar
  9. 9.
    H.G. Schuster, Deterministic chaos, VCH Verlag, Weinheim (1989).zbMATHGoogle Scholar
  10. 10.
    L. D. Landau and E. M. Lifchitz, Mechanics, Pergamon Press, N.Y. (1976).Google Scholar
  11. 11.
    G. Kotowski, Z. Angew. Math. Mech. 23, 213 (1943).zbMATHGoogle Scholar
  12. 12.
    H. Dawson: “Quadrupole Mass Spectrometry”, Elsevier, Amsterdam (1976).Google Scholar
  13. 13.
    R. Alheit, C. Hennig, R. Morgenstern, F. Vedel and G. Werth, Appl. Phys. B 61, 277 (1995).CrossRefADSGoogle Scholar
  14. 14.
    R. Alheit, S. Kleineidam, F. Vedel, M. Vedel and G. Werth, Int. J. Mass Spectrom. Ion Processes, 154, 155 (1996).CrossRefGoogle Scholar
  15. 15.
    Y. Wang, J. Franzen, K. P. Wanczek, Int. J. Mass Spectrom. Ion Processes. 124, 125 (1993).CrossRefGoogle Scholar
  16. 16.
    F. Guidugli and P. Traldi, Rapid Comm. Mass Spectrom. 5, 491 (1991), and F.Guidugli, P.Traldi, A.M.Franklin, M.L.Langford, J.Murell and J.F.J. Todd, Rapid Commun.Mass Spectrom. 6, 229 (1992).Google Scholar
  17. 17.
    K.L. Morand, S.A. Lammert and R.G. Cooks, Rapid Comm. Mass Spectrom. 5, 491 (1991).Google Scholar
  18. 18.
    F.v. Busch, W. Paul, Z. Phys. 164, 581 (1961).Google Scholar
  19. 19.
    M. Vedel, J. Rocher, M. Knoop and F. Vedel, Appl. Phys. B 66, 191 (1998).CrossRefADSGoogle Scholar
  20. 20.
    H. G. Dehmelt, Adv. At. Mol. Mol. Phys. 3, 53 (1967).CrossRefGoogle Scholar
  21. 21.
    F. Vedel and M. Vedel, Phys. Rev. A 41, 2348–2351 (1990).CrossRefADSGoogle Scholar
  22. 22.
    J. Rocher, Thèse de l’Univerisité de Provence, Marseille (1998)Google Scholar
  23. 23.
    H. Dehmelt, B.A.P.S.. 18, 1521 (1973), I.E.E.E. Trans. Instrum. Meas. IM-31, 83 (1982).Google Scholar
  24. 24.
    D.W. Allan, I.E.E.E., Trans. Ultrason., Ferroelectric, Freq. Contr. 34,647 (1987).ADSCrossRefGoogle Scholar
  25. 25.
    E. Simon, P. Laurent and A. Clairon, Phys. Rev. A 57, 436 (1998).CrossRefADSGoogle Scholar
  26. 26.
    M. Jardino and M. Desaintfuscien, I.E.E.E. Trans. Instrum. Meas. IM-29, 163 (1980).CrossRefGoogle Scholar
  27. 27.
    J. D. Prestage, R.L. Tjoelker and L. Maleki, CP457, Trapped charged particles and fundamentals physics, p. 357, ed. D. H.E. Dubin and D. Schneider, A. I. P. (1999).Google Scholar
  28. 28.
    J. D. Prestage, R.L. Tjoelker and L. Maleki, Phys. Rev. Lett. 74, 3511 (1995).CrossRefADSGoogle Scholar
  29. 29.
    W.M. Itano et al.,, Phys. Rev.A 47, 3554 (1993) 74, 3511 (1995).CrossRefADSGoogle Scholar
  30. 30.
    D.J. Berkeland et al., Phys. Rev. Lett. 80, 2089 (1998).CrossRefADSGoogle Scholar
  31. 31.
    D.J. Wineland, Phys. Rev. A 20,1521 (1979).CrossRefADSGoogle Scholar
  32. 32.
    D.J. Wineland, W.M. Itano, J.C. Bergquist, and R.G. Hulet, Phys. Rev. A 36, 2220–2232 (1987).CrossRefADSGoogle Scholar
  33. 33.
    E. Peik, J. Abel, Th. Becker, J. von Zanthier, and H. Walther, Phys. Rev. A 60, 439 (1999)CrossRefADSGoogle Scholar
  34. 34.
    W. Nagourney, JH. Sandberg and H. Dehmelt, Phys. Rev. Lett. 56, 2797(1986).CrossRefADSGoogle Scholar
  35. 35.
    G. P. Barwood, P. Gill, H. A. Klein and W. R. C. Rowley, I.E.E.E. Trans. Instrum. Meas. 46, 135 (1997).Google Scholar
  36. 36.
    J.E. Bernard, L. Marmet and A. Madej, Opt. Comm. 150, 170 (1998).CrossRefADSGoogle Scholar
  37. 37.
    J.E. Bernard, A. Madej, et al. Phys. Rev. Lett, 82, 3228 (1999).CrossRefADSGoogle Scholar
  38. 38.
    B.C. Young et al., CP457, Trapped charged particles and fundamentals physics, ed. D. H.E. Dubin and D. Schneider, The American Institute of Physics (1999), more recent performances are given in B.C. Young et al.,Phys. Rev. Lett, 82, 3799 (1999).Google Scholar
  39. 39.
    M. Knoop, M. Vedel and F. Vedel, J. Phys. II, 4, 1639 (1994).Google Scholar
  40. 40.
    M. Knoop, M. Vedel, F. Vedel, Phys.Rev.A 52, 3763 (1995), for a review see E. Biemont and C.J. Zeippen, Comments At. Mol. Phys. 33, 29 (1996) and M. Knoop, M.Vedel, F.Vedel, Phys.Rev.A 58, 264 (1995) and ref. therein.CrossRefADSGoogle Scholar
  41. 41.
    C.A. Schrama, E. Peik, W.W. Smith, H. Walther, Opt.Comm.101, 32 (1993)CrossRefADSGoogle Scholar
  42. 42.
    M. Knoop, M. Vedel, M. Houssin, M. Herbane, T. Pawletko, F. Vedel, Proceedings of the Joint Meeting of the 13th European Forum of Time and Frequency and the 1999 IEEE International Frequency Control Symposium, Besangon, avril 1999, in press.Google Scholar
  43. 43.
    C. Monroe et al., Phys. Rev. Lett. 75, 4714 (1995).zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    F. Diedrich et al, Phys. Rev. Lett 58, 203 (1987).CrossRefADSGoogle Scholar
  45. 45.
    U. Eichmann, et al. Phys.Rev.Lett.70, 2359 (1993)CrossRefADSGoogle Scholar
  46. 46.
    Q.A. Turchette et al. LANL e-print archive quant-phys/9806012 (1998).Google Scholar
  47. 47.
    I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).CrossRefADSGoogle Scholar
  48. 48.
    I. Cirac, R. Blatt, A.S. Parkins and P. Zoller, Phys. Rev. Lett. 70, 762 (1993).CrossRefADSGoogle Scholar
  49. 49.
    I. Cirac, R. Blatt and P. Zoller, Phys. Rev. A 49, R3174 (1994).CrossRefADSGoogle Scholar
  50. 50.
    R. Blatt, I. Cirac and P. Zoller, Phys. Rev. Lett. 52,518 (1995).ADSGoogle Scholar
  51. 51.
    D.M. Meekhof et al., Phys. Rev. Lett. 76, 1796 (1996).CrossRefADSGoogle Scholar
  52. 52.
    C. Monroe et al, Science, 272 (1996).Google Scholar
  53. 53.
    “Electrodynamic Ion traps” A special issue honoring the carreers and contributions of John Todd and Ray March, Int. J. Mass Spectrom. Ion processes, in pressGoogle Scholar
  54. 54.
    P. K. Ghosh, Ion traps, Clarendon Press, Oxford (1995).Google Scholar
  55. 55.
    S.F. Huelga, P.L. Knight, C. Macchiavello, M.B. Plenio and V. Vedra. Appl. Phys. B 67, 723 (1998).CrossRefADSGoogle Scholar
  56. 56.
    R. Huesman, Ch. Balzer, Ph. Courteille, W. Neuhauser and P.E. Toschek, Phys. Rev. 82, 1611 (1999).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Fernande Vedel
    • 1
  1. 1.Physique des Interactions Ioniques et Moléculaires (UMR 6633 CNRS - UAM1)Université de Provence, Centre de St-JérômeMarseille Cedex 20

Personalised recommendations