Skip to main content

On the Modular Function and Its Importance for Arithmetic

  • Conference paper
  • First Online:
Noise, Oscillators and Algebraic Randomness

Part of the book series: Lecture Notes in Physics ((LNP,volume 550))

  • 709 Accesses

Abstract

The modular function

$$ j(\tau ) = \exp ( - 2i\pi \tau ) + 744 + \sum\limits_{n = 1}^\infty {a_n \exp (2i\pi n\tau )} , a_n \in Z, $$

automorphic with respect to the action of SL(2,Z) on the Poincaré upper half plane of those τ ∈ C with positive imaginary part, is very important for the theory of elliptic curves and of modular forms. Indeed, the values of j parametrise the isomorphism classes over C of elliptic curves. In this lecture, we give an introduction to the modular function, and explain in particular a celebrated result of Th. Schneider (1937) which says that the j function takes an algebraic value at an algebraic point τ if and only if τ is imaginary quadratic, that is the associated class of elliptic curves has complex multiplication. We also discuss some more recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Cohen, Elliptic Curves, in From Number Theory to Physics, M. Waldschmidt, P. Moussa, J.-M. Luck, C. Itzykson, eds., Springer-Verlag, New York Berlin Heidelberg Tokyo Hong Kong Barcelona Budapest (1989).

    Google Scholar 

  2. P. B. Cohen, Humbert surfaces and transcendence properties of automorphic functions, Rocky Mountain J. Math. 26, No.3 (1996), pp. 987–1001.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Cohen, J. Wolfart, Modular embeddings for some non-arithmetic Fuchsian groups, Acta Arith. LVI, (1990), pp. 93–110.

    MathSciNet  Google Scholar 

  4. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, New York Berlin Heidelberg Tokyo (1984).

    MATH  Google Scholar 

  5. Th. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann 113, (1937), pp. 1–13.

    Article  MathSciNet  Google Scholar 

  6. K. Takeuchi, A characterisation of arithmetic Fuchsian groups, J. Math.Soc. Japan 27, No.4 (1975), pp. 600–612.

    MATH  MathSciNet  Google Scholar 

  7. K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29, (1977), pp. 91–106.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, P.B. (2000). On the Modular Function and Its Importance for Arithmetic. In: Planat, M. (eds) Noise, Oscillators and Algebraic Randomness. Lecture Notes in Physics, vol 550. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45463-2_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45463-2_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67572-3

  • Online ISBN: 978-3-540-45463-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics