Algebraic Dynamics and Transcendental Numbers

  • Michel Waldschmidt
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 550)


A first example of a connection between transcendental numbers and complex dynamics is the following. Let p and q be polynomials with complex coe efficients of the same degree. Aclassical result of Böttcher states that p and q are locally conjugates in a neighborhood of ∞: there exists a function f, conformal in a neighborhood of infinity, such that f(p(z)) = q(f(z)). Under suitable assumptions, f is a transcendental function which takes transcendental values at algebraic points. Aconsequence is that the conformal map (Douady-Hubbard) from the exterior of the Mandelbrot set onto the exterior of the unit disk takes transcendental values at algebraic points. The underlying transcendence method deals with the values of solutions of certain functional equations.

Aquite different interplay between diophantine approximation and algebraic dynamics arises from the interpretation of the height of algebraic numbers in terms of the entropy of algebraic dynamical systems.

Finally we say a few words on the work of J.H. Silverman on diophantine geometry and canonical heights including arithmetic properties of the Hénon map.


Elliptic Curve Periodic Point Algebraic Number Diophantine Approximation Algebraic Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D’Ambros, P., Everest, G., Miles, R., Ward, T. (1999) Dynamical systems arising from elliptic curves. Manuscript, 9 pp.Google Scholar
  2. 2.
    Becker, P-G., Bergweiler, W. (1993) Transcendency of local conjugacies in complex dynamics and transcendency of their values. Manuscripta Math. 81 no. 3–4, 329–337.zbMATHMathSciNetGoogle Scholar
  3. 3.
    Becker, P-G., Bergweiler, W. (1995) Hypertranscendency of conjugacies in complex dynamics. Math. Ann. 301 no. 3, 463–468. 378 Michel WaldschmidtzbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Call, G. S., Silverman, J. H. (1993) Canonical heights on varieties with morphisms. Compositio Math. 89 no. 2, 163–205.zbMATHMathSciNetGoogle Scholar
  5. 5.
    Everest, G., Ward, T. (1999) Heights of Polynomials and Entropy in Algebraic Dynamics. Springer, London.zbMATHGoogle Scholar
  6. 6.
    Halmos, P. (1956) Lectures on ergodic theory. Publications of the Mathematical Society of Japan, no. 3, The Mathematical Society of Japan. Chelsea Publishing Co., New York 1960.zbMATHGoogle Scholar
  7. 7.
    Lehmer, D.H. (1933) Factorization of certain cyclotomic functions. Ann. of Math. 34 461–479.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Morton, P., Silverman, J. H. (1994) Rational periodic points of rational functions. Internat. Math. Res. Notices no. 2, 97–110.Google Scholar
  9. 9.
    Morton, P., Silverman, J. H. (1995) Periodic points, multiplicities, and dynamical units. J. Reine Angew. Math. 461, 81–122.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Moussa, P., Geronimo, J. S., Bessis, D. (1984) Ensembles de Julia et propriétés de localisation des familles itérées d’entiers algébriques. C. R. Acad. Sci. Paris Sér. I Math. 299 no. 8, 281–284.zbMATHMathSciNetGoogle Scholar
  11. 11.
    Nishioka, Kumiko (1996) Mahler functions and transcendence. Lecture Notes in Mathematics 1631, Springer-Verlag, Berlin.zbMATHGoogle Scholar
  12. 12.
    Schmidt, K. (1995) Dynamical systems of algebraic origin. Birkhäuser, Progress in Math. 128.Google Scholar
  13. 13.
    Silverman, J. H. (1991) Rational points on K3 surfaces: a new canonical height. Invent. Math. 105, no. 2, 347–373.zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Silverman, J. H. (1993) Integer points, Diophantine approximation, and iteration of rational maps. Duke Math. J. 71 no. 3, 793–829.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Silverman, J. H. (1994) Geometric and arithmetic properties of the Hénon map. Math. Z. 215 no. 2, 237–250.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Silverman, J. H. (1995) The field of definition for dynamical systems on P1. Compositio Math. 98 no. 3, 269–304.zbMATHMathSciNetGoogle Scholar
  17. 17.
    Silverman, J. H. (1996) Rational functions with a polynomial iterate. J. Algebra 180 no. 1, 102–110.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Silverman, J. H. (1996) Small Salem numbers, exceptional units, and Lehmer’s conjecture. Symposium on Diophantine Problems (Boulder, CO, 1994). Rocky Mountain J. Math. 26 no. 3, 1099–1114.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Michel Waldschmidt
    • 1
  1. 1.Institut de Mathématiques de JussieuUniversité P. et M. Curie, Théorie des NombresPARIS Cedex 05France

Personalised recommendations