Advertisement

From Symbolic Dynamics to a Digital Approach: Chaos and Transcendence

  • K. Karamanos
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 550)

Abstract

We review recent progress on Feigenbaum attractors and their interconnection with Number Theory. We further enlight the relation between Chaos and Transcendence.

Keywords

Accumulation Point Symbolic Dynamics Symbolic Sequence Replacement Rule Stable Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicolis G., (1995) Introduction to Nonlinear Science. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Bai-Lin H., (1994) Chaos. World Scientific, SingaporeGoogle Scholar
  3. 3.
    Schuster H.G., (1984) Deterministic Chaos. Physik-VerlagGoogle Scholar
  4. 4.
    Schröder M., (1991) Fractals, Chaos, Power Laws. Freeman, New YorkzbMATHGoogle Scholar
  5. 5.
    Nicolis G. and Gaspard P., (1994) Toward a Probabilistic approach to Complex Systems. Chaos, Solitons & Fractals 4, No. 1, 41–57zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Khinchin A.I., (1957) Mathematical Foundations of Information Theory. Dover, New YorkzbMATHGoogle Scholar
  7. 7.
    Kemeny J. and Snell L., (1976) Finite Markov Chains. Springer-Verlag, BerlinzbMATHGoogle Scholar
  8. 8.
    Thom R., (1983) Paraboles et Catastrophes. Flammarion, PariszbMATHGoogle Scholar
  9. 9.
    Nicolis J.S., (1991) Chaos and Information Processing. World Scientific, SingaporeGoogle Scholar
  10. 10.
    Eckmann J.P. and Ruelle D., (1985) Ergodic Theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Milnor J. and Thurston W., (1986) On iterated maps of the interval, in 1342 Dynamical Systems, Proceedings, University of Maryland, J.C. Alexander (Ed.), 465–563, Lecture Notes in Mathematics, Springer-Verlag; and references thereinGoogle Scholar
  12. 12.
    Julia G., (1918) Mémoire sur l’itération des fonctions rationelles. J. de Math. (Liouville) Ser. 7, 4, 47–245. The relevant theorem appears on p. 129.Google Scholar
  13. 13.
    Fatou M.P., (1919) Sur les èquations fonctionnelles. Bull. Soc. Math. France 47, 161–271; (1920) 48, 33-94, 208-314MathSciNetGoogle Scholar
  14. 14.
    Metropolis N., Stein M.L. and Stein P.R., (1973) On Finite Limit Sets for Transformations on the Unit Interval. Journal of Combinatorial Theory, Vol. A 15, No. 1, 25–44MathSciNetGoogle Scholar
  15. 15.
    Derrida B., Gervois A. and Pomeau Y., (1978) Iteration of endomorphisms on the real axis and representation of numbers. Ann. Inst. Henri Poincaré, Section A: Physique Théorique, Vol. XXIX, n0 3, 305–356MathSciNetGoogle Scholar
  16. 16.
    Karamanos K. and Nicolis G., (1999) Symbolic Dynamics and Entropy Analysis of Feigenbaum Limit Sets. Chaos, Solitons & Fractals, 10, No 7, 1135–1150zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Feigenbaum M., (1978) Quantitative Universality for a Class of Nonlinear Transformations. J. Stat. Phys. 19, 25zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Feigenbaum M., (1979) The Universal Metric Properties of Nonlinear Transformations. J. Stat. Phys. 21, 669zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Grassberger P., (1981) On the Hausdor. Dimension of Fractal Attractors. J. Stat. Phys. 26, No. 1, 173CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Fraser S. and Kapral R., (1985) Mass and dimension of Feigenbaum attractors. Phys. Rev. A31, 3, 1687ADSMathSciNetGoogle Scholar
  21. 21.
    Christol G., Kamae T., Mendes-France M. and Rauzy G., (1980) Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108, 401–419zbMATHMathSciNetGoogle Scholar
  22. 22.
    Allouche J.-P. and Cosnard M., (1983) Itérations de fonctions unimodales et suites engendrées par automates. C. R. Acad. Sc. Paris (Série I), 296, 159–162zbMATHMathSciNetGoogle Scholar
  23. 23.
    Grassberger P., (1986) Toward a Quantitative Theory of Self-Generated Complexity. Int. J. Theor. Phys. 25, No. 9, 907zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Ebeling W. and Nicolis G., (1991) Entropy of Symbolic Sequences: the Role of Correlations. Europhys. Lett. 14 (3), 191–196CrossRefADSGoogle Scholar
  25. 25.
    Ebeling W. and Nicolis G., (1992) Word Frequency and Entropy of Symbolic Sequences: a Dynamical Perspective. Chaos, Solitons & Fractals 2, 635zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Freund J., Ebeling W. and Rateitschak K., (1996) Self-similar sequences and universal scaling of dynamical entropies. Phys. Rev. E54, 5, 5561–5566ADSGoogle Scholar
  27. 27.
    Rateitschak K., Freund J. and Ebeling W., (1996) Entropy of sequences Generated by Nonlinear Processes: The Logistic Map, in Entropy and Entropy Generation. Shiner J.S. (Ed.), Kluwer Acad. Publ., 11–26Google Scholar
  28. 28.
    Freund J. and Rateitschak K., (1998) Entropy Analysis of Noise Contaminated Sequences. Int. J. Bif. Chaos 8(5), 933zbMATHCrossRefGoogle Scholar
  29. 29.
    Mandelbrot B.B., (1982) The Fractal Geometry of Nature. Freeman, San FransciscozbMATHGoogle Scholar
  30. 30.
    Balakrishnan V., Nicolis G. and Nicolis C., (1997) Recurrence Time Statistics in Chaotic Dynamics. I. Discrete time Maps. J. Stat. Phys., 86, 191zbMATHADSMathSciNetGoogle Scholar
  31. 31.
    Karamanos K., (1999) On the connection between 1D Chaotic Dynamics and Number Theory. From Symbolic Dynamics to a Digital Approach. Submitted for publication to Nonlinearity Google Scholar
  32. 32.
    Karamanos K., unpublished (1998). In fact the pure m sequences turn out to be self-similar under the repeated use of the replacements (21) and (22) of [16]. This means that Ln((Pm *)∞) = (Pm *) for any finite n, where L is the operator defined in Sec 4 of [16] and * is the composition rule defined in [15]. This can be shown by a method similar to that used in [16]Google Scholar
  33. 33.
    Chaitin G.J., (1994) Randomness and Complexity in Pure Mathematics. Int. J. Bif. Chaos 4, No 1, 3–15zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Allouche J.-P., (April 1987) Automates finis en Mathématiques et en Physique. Pour la Science 94 Google Scholar
  35. 35.
    Waldschmidt M., (1993) Introduction to recent results in Transcendental Number Theory. Lectures given at the Workshop and Conference in number theory held in Hong-Kong, June 29–July 3 1993, preprint 074-93, M.S.R.I., BerkeleyGoogle Scholar
  36. 36.
    Cobham A., (1972) Uniform tag sequences. Math. Systems Theory 6, 164–192zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Loxton J.H. and van der Poorten A.J., (1988) Arithmetic properties of automata: regular sequences. J. Reine Angew. Math. 392, 57–69; Allouche J.-P., personal communicationzbMATHMathSciNetGoogle Scholar
  38. 38.
    Ferenczi S. and Maduit C., (1997) Transcendence of Numbers with a Low Complexity Expansion. J. of Number Theory 67, 146–161zbMATHCrossRefGoogle Scholar
  39. 39.
    Allouche J.-P. and Zamboni L.Q., (1998) Algebraic Irrational Binary Numbers Cannot Be Fixed Points of Non-trivial Constant Length or Primitive Morphisms. J. of Number Theory 69, 119–124zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Wagon S., (1985) Is π normal? Math. Intelligencer 7, 65–67MathSciNetGoogle Scholar
  41. 41.
    Klee V. and Wagon S., (1989) New and Old Unsolved Problems in Plane Geometry and Number Theory. Mathematical Association of America, Washington D.C.Google Scholar
  42. 42.
    Borwein J.M., Borwein P.B. and Bailey D.H., (March 1989) Ramanujan, Modular Equations, and Approximations to Pi, or How to Compute One Billion Digits of Pi. Am. Math. Monthly 96, 201–219zbMATHMathSciNetGoogle Scholar
  43. 43.
    Bailey D.H., Borwein J.M., Borwein P.B. and Plouffe S., (1997) The Quest for Pi. Math. Intelligencer 19(1), 50–57zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • K. Karamanos
    • 1
  1. 1.Centre for Nonlinear Phenomena and Complex SystemsBrusselsBelgium

Personalised recommendations