Advertisement

Algebraic and Analytic Randomness

  • Jean-Paul Allouche
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 550)

Abstract

Is it possible to mathematically define words like: randomness, chaos, disorder, irregularity, complexity, or like: determinism, order, periodicity, regularity, simplicity? Are there concepts in between (quasi-periodicity)? How do these concepts fit objects from physics, e.g., glasses, crystals, quasi-crystals? We try to describe and compare various notions used in mathematics.

Keywords

Spectral Measure Formal Power Series Topological Entropy Analytic Randomness Continue Fraction Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allouche, J.-P. (1987) Automates finis en théorie des nombres. Exposition. Math. 5, 239–266zbMATHMathSciNetGoogle Scholar
  2. 2.
    Allouche, J.-P., Davison, L., Queffélec M. (1999) Transcendence of Sturmian or morphic continued fractions. In preparationGoogle Scholar
  3. 3.
    Allouche, J.-P. (1994) Sur la complexité des suites infinies. Bull. Belg. Math. Soc. 1, 133–143zbMATHMathSciNetGoogle Scholar
  4. 4.
    Allouche, J.-P., Haeseler, F. von, Peitgen, H.-O., Petersen, A., Skordev, G. (1997) Automaticity of double sequences generated by one-dimensional linear cellular automata. Theoret. Comput. Sci. 188, 195–209zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Allouche, J.-P., Haeseler, F. von, Peitgen, H.-O., Skordev, G. (1996) Linear cellular automata, finite automata and Pascal’s triangle. Disc. Appl. Math. 66, 1–22zbMATHCrossRefGoogle Scholar
  6. 6.
    Allouche, J.-P., Mendès France, M. (1995) Automata and automatic sequences in:Beyond quasicrystals, Éd. F. Axel, D. Gratias. Springer/Les Éditions de Physique, pp. 293–367Google Scholar
  7. 7.
    Allouche, J.-P., Shallit J. (1999) The ubiquitous Prouhet-Thue-Morse sequence. Proceedings of SETA’98, to appearGoogle Scholar
  8. 8.
    Allouche, J.-P., Zamboni, L. Q. (1998) Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory 69, 119–124zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Berthé, V. (1995) Entropy in deterministic and random systems in: Beyond quasicrystals, Éd. F. Axel, D. Gratias. Springer/Les Éditions de Physique, pp. 441–463Google Scholar
  10. 10.
    Bertrandias, J.-P. (1966) Espaces de fonctions bornées et continues en moyenne asymptotique d’ordre p. Bull. Soc. Math. France, Suppl., Mém. 5, 1–106MathSciNetGoogle Scholar
  11. 11.
    Champernowne, D. G. (1933) The construction of decimals normal in the scale of ten. J. London Math. Soc. 8, 254–260zbMATHCrossRefGoogle Scholar
  12. 12.
    Christol G. (1979) Ensembles presque périodiques k-reconnaissables. Theoret. Comput. Sci. 9, 141–145zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Christol, G., Kamae, T., Mendès France, M., Rauzy, G. (1980) Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108, 401–419zbMATHMathSciNetGoogle Scholar
  14. 14.
    Cobham, A. (1969) On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3, 186–192zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Cobham, A. (1972) Uniform tag sequences. Math. Systems Theory 6, 164–192zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Dekking, F. M. (1977) Transcendance du nombre de Thue-Morse. C. R. Acad. Sci. Paris Sér. I 285, 157–160zbMATHMathSciNetGoogle Scholar
  17. 17.
    Dekking, F. M., Mendès France, M., Poorten, A. J. van der (1982) Folds!. Math. Intelligencer 4, 130–138, 173-181, 190-195zbMATHGoogle Scholar
  18. 18.
    Ehrenfeucht, A., Lee, K. P., Rozenberg, G. (1975) Subword complexities of various classes of deterministic developmental languages without interaction. Theoret. Comput. Sci. 1, 59–75zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Korec, I. (1990) Pascal triangles modulo n and modular trellises. Comput. Artif. Intell. 9, 105–113zbMATHMathSciNetGoogle Scholar
  20. 20.
    Ferenczi, S., Kása, Z. (1999) Complexity for finite factors of infinite sequences. Theoret. Comput. Sci. 218, 177–195zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ferenczi, S., Mauduit, C. (1997) Transcendence of numbers with a low complexity expansion. J. Number Theory 67, 146–161zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Loxton, J. H., Poorten, A. J. van der (1988) Arithmetic properties of automata: regular sequences. J. Reine Angew. Math. 392, 57–69zbMATHMathSciNetGoogle Scholar
  23. 23.
    Mahler, K. (1929) Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Annalen 101, 342–266. (1930) Corrigendum 103, 532CrossRefMathSciNetGoogle Scholar
  24. 24.
    Mahler, K. (1937) Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen. Proc. Konin. Neder. Akad. Wet. 40, 421–428zbMATHGoogle Scholar
  25. 25.
    Morse, M. (1921) Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc. 22, 84–100CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Morse, M., Hedlund, G. A. (1938) Symbolic Dynamics. Amer. J. Math. 60, 815–866zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Morse, M., Hedlund, G. A. (1940) Symbolic Dynamics II. Sturmian trajectories. Amer. J. Math. 62, 1–42zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Parry, W. (1960) On the â-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11, 401–416zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Prouhet, E. (1851) Mémoire sur quelques relations entre les puissances des nombres. C. R. Acad. Sci. Paris Sér. I 33, 225Google Scholar
  30. 30.
    Queffélec, M. (1998) Transcendance des fractions continue de Thue-Morse. J. Number Theory 73, 201–211zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Rényi, A. (1957) Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8, 477–493zbMATHCrossRefGoogle Scholar
  32. 32.
    Rudin, W. (1959) Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10, 855–859zbMATHMathSciNetGoogle Scholar
  33. 33.
    Salon, O. (1987) Suites automatiques à multi-indices et algébricité. C. R. Acad. Sci. Paris Sér. I 305, 501–504zbMATHMathSciNetGoogle Scholar
  34. 34.
    Salon, O. (1989) Propriétés arithmétiques des automates multidimensionnels. Thèse, Université Bordeaux I.Google Scholar
  35. 35.
    Shallit, J. (1988) Ageneralization of automatic sequences. Theoret. Comput. Sci. 61, 1–16zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Shapiro, H. S. (1951) Extremal problems for polynomials and power series. Thesis, MITGoogle Scholar
  37. 37.
    Thue, A. (1906) Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 7, 1–22. Reprinted in: (1997) Selected mathematical papers of Axel Thue, T. Nagell, ed., Universitetsforlaget, Oslo, pp. 139-158Google Scholar
  38. 38.
    Thue, A. (1912) Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67. Reprinted in: (1997) Selected mathematical papers of Axel Thue, T. Nagell, ed., Universitetsforlaget, Oslo, pp. 413-478Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Jean-Paul Allouche
    • 1
  1. 1.CNRSLRIOrsay CedexFrance

Personalised recommendations