Advertisement

Diophantine Conditions and Real or Complex Brjuno Functions

  • Pierre Moussa
  • Stefano Marmi
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 550)

Abstract

The continued fraction expansion of the real number x=a 0+x 0, a 0∈ℤ is given by 0≤x n<1, x n −1 =a n+1+x n+1+a n+1∈ℕ for n≥0. The Brjuno function is then \( B(x) = \sum\nolimits_{n = 0}^\infty {x_0 x_1 \ldots x_{n - 1} \ln (x_n^{ - 1} )} \) and the number x satisfies the Brjuno diophantine condition whenever B(x) is bounded. Invariant circles under a complex rotation persist when the map is analytically perturbed, if and only if the rotation number satisfies the Brjuno condition, and the same holds for invariant circles in the semi-standard and standard map cases. In this lecture, we will review some properties of the Brjuno function, and give some generalisations related to familiar diophantine conditions. The Brjuno function is highly singular and takes value +∞ on a dense set including rationals. We present a regularisation leading to a complex function holomorphic in the upper half plane. Its imaginary part tends to the Brjuno function on the real axis, the real part remaining bounded, and we also indicate its transformation under the modular group.

Keywords

Half Plane Rotation Number Modular Group Continue Fraction Expansion Invariant Circle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chirikov, B. (1979) Auniv ersal instability of many-dimensional oscillator systems. Phys. Reports, 52, 263–279CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Escande, D. (1985) Stochasticity in classical Hamiltonian systems: universal aspects. Phys. Reports, 121, 165–261CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Greene, J. M. (1979) Ametho d for determining a stochastic transition. J. Math. Phys. 20, 1183–1201CrossRefADSGoogle Scholar
  4. 4.
    Aubry S. and Le Daeron, P. (1983) The discrete Frenkel-Kontorova model and its extensions. Physica 8D, 381–422ADSGoogle Scholar
  5. 5.
    Mather J. N. (1984) Non existence of invariant circles. Ergod. Theor. and Dynam. Sys. 4, 301–309zbMATHMathSciNetGoogle Scholar
  6. 6.
    Yoccoz J.-C. (1992) An introduction to small divisors problems, in: From Number Theory to Physics, Waldschmidt M., Moussa P., Luck J.-M., and Itzykson C. editors, Springer-Verlag, Berlin, pp. 659–679Google Scholar
  7. 7.
    Berretti A. and Gentile G. (1998) Scaling properties of the radius of convergence of the Lindstedt series: the standard map. University of Roma, Italy, preprintGoogle Scholar
  8. 8.
    Berretti A. and Gentile G. (1998) Bryuno function and the standard map. University of Roma, Italy, preprintGoogle Scholar
  9. 9.
    Yoccoz J.-C. (1995) Théorème de Siegel, nombres de Bruno et polynômes quadratiques. Astérisque, 231, 3–88, (appeared first as a preprint in 1987).Google Scholar
  10. 10.
    Marmi S. and Stark J. (1992) On the standard map critical function. Nonlinearity 5, 743–761zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Carletti T. and Laskar J. (1999) Scaling law in the standard map critical function, interpolating hamiltonian and frequency analysis. (Preprint, Bureau des Longitudes, Paris, in preparation)Google Scholar
  12. 12.
    Treshev D. and Zubelevitch O. (1998) Invariant tori in Hamiltonian systems with two degrees of freedom in a neighborhood of a resonance. Regular and Chaotic dynamics, 3, 73–81CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gelfreich G. V. (1999) Apro of of exponentially small transversality of the separatrices for the standard map. Commun. Math. Phys. 201, 155–216zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Davie A. M. (1995) Renormalisation for analytic area preserving maps. University of Edinburgh preprintGoogle Scholar
  15. 15.
    Davie A. M. (1994) the critical function for the semistandard map. Nonlinearity 7, 219–229zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Marmi S. (1990) Critical functions for complex analytic maps function. J. Phys. A: Math.Gen. 23, 3447–3474zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Perez-Marco R. (1992) Solution complète du problème de Siegel de linéarisation d’une application holomorphe autour d’un point fixe. Séminaire Bourbaki nr.753, Astérisque, 206, 273–310MathSciNetGoogle Scholar
  18. 18.
    Marmi S., Moussa P., and Yoccoz J.-C. (1997) The Brjuno function and their regularity properties. Commun. Math. Phys. 186, 265–293zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Buric N., Percival I. C., and Vivaldi F. (1990) Critical function and modular smoothing, Nonlinearity 3, 21–37zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    MacKay R. S. (1988) Exact results for an approximate renormalisation scheme and some predictions for the breakup of invariant tori, Physica 33D, 240–265, and Erratum (1989) Physica 36D, 358-265ADSMathSciNetGoogle Scholar
  21. 21.
    Schweiger F. (1995) Ergodic theory of fibered systems and metric number thory, Clarendon Press, OxfordGoogle Scholar
  22. 22.
    Moussa P., Cassa A., and Marmi S. (1999) Continued fractions and Brjuno functions, J. Comput. Appl. Math. 105 403–415zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Brjuno. A. D. (1971) Analytical form of differential equations, Trans. Moscow Math. Soc. 25 131–288, and, (1972), 26 199-239Google Scholar
  24. 24.
    Hardy G. H., and Wright E. M. (1938) An introduction to the theory of numbers, Clarendon Press, Oxford, chapter 11, fifth edition 1979zbMATHGoogle Scholar
  25. 25.
    Garnett J. B. (1981) Bounded Analytic functions, Academic Press, New York.zbMATHGoogle Scholar
  26. 26.
    Marmi S., Moussa P., and Yoccoz J.-C. (1995) Développements en fractions continues, fonctions de Brjuno et espaces BMO, CEA/Saclay, Note CEA-N-2788Google Scholar
  27. 27.
    Marmi S., Moussa P., and Yoccoz J.-C. (1999) Complex Brjuno functions, Preprint SPhT/CEASacla y T99/066, 71 p.Google Scholar
  28. 28.
    Lewin L, (1981) Polylogarithms and Associated Functions, Elsevier North Holland, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Pierre Moussa
    • 1
  • Stefano Marmi
    • 2
  1. 1.Service de Physique ThéoriqueCEA/SaclayGif sur Yvette cedexFrance
  2. 2.Dipartimento di Matematica“U.Dini” Università di FirenzeFirenzeItaly

Personalised recommendations