Skip to main content

Detection of Chaos in the Noise of Electronic Oscillators by Time Series Analysis Methods

  • Conference paper
  • First Online:
Noise, Oscillators and Algebraic Randomness

Part of the book series: Lecture Notes in Physics ((LNP,volume 550))

  • 709 Accesses

Abstract

Frequency fluctuations of an electronic oscillator are studied by time series analysis methods in order to detect an eventual underlying attractor. Measurements are performed by a period counting technique with a reference signal of 10 MHz and various frequencies of the local oscillator. Three different behaviours of the Allan variance are observed, depending on the mean frequency of the beat signal. The results of time series analyses clearly show that two of these behaviours are associated with the presence of a chaotic process, whereas the third is more intricate. When applied to data computed from continued fraction expansions of real numbers, these methods lead to the same conclusions. For two kinds of truncation, the data present a chaotic behaviour, which is not obvious for the third kind. A correspondence between the behaviour of the frequency fluctuations and the way of truncating the continued fraction expansions can thus be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lorenz E.N. (1963) Deterministic Nonperiodic Flow. J Atmosph Sci 20:130

    Article  ADS  Google Scholar 

  2. Perera A.G.U., Matsik S.G. (1995) Chaotic to Periodic Spontaneous Pulsing in Current Driven Silicon p-i-n Structures. Physica D84:615

    Google Scholar 

  3. Hauck T., Schneider F.W. (1994) Chaos in a Farey Sequence through Period Doubling in the Peroxidase-Oxidase Reaction. J Phys Chem 98:2072

    Article  Google Scholar 

  4. Sugihara G., May R.M. (1990) Nonlinear Forecasting as a Way of Distinguishing Chaos from Measurement Error in Time Series. Nature 344:734

    Article  ADS  Google Scholar 

  5. Scheinkman J.A., LeBaron B. (1989) Nonlinear Dynamics and Stock Returns. J Business 62:311

    Article  Google Scholar 

  6. Tsonis A.A., Elsner J.B. (1992) Nonlinear Prediction as a Way of Distinguishing Chaos from Random Fractal Sequences. Nature 358:217

    Article  ADS  Google Scholar 

  7. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. (1980) Geometry from a Time Series. Phys Rev Lett 45:712

    Article  ADS  Google Scholar 

  8. Mané R. (1981) On the Dimension of the Compact Invariant Sets of Certain Non-Linear Maps. In: Rand D.A., Young L.S. (Eds.) Dynamical Systems and Turbulence. Springer, Berlin, Lectures Notes in Mathematics 898:230

    Chapter  Google Scholar 

  9. Takens F. (1981) Detecting Strange Attractors in Turbulence. In: Rand D.A., Young L.S. (Eds.) Dynamical Systems and Turbulence. Springer, Berlin, Lectures Notes in Mathematics 898:366

    Chapter  Google Scholar 

  10. Grassberger P., Procaccia I. (1983) Measuring the Strangeness of Strange Attractors. Physica D9:189

    ADS  MathSciNet  Google Scholar 

  11. Grassberger P., Procaccia I. (1983) Estimation of the Kolmogorov Entropy from a Chaotic Signal. Phys Rev A28:2591

    ADS  Google Scholar 

  12. Roux J.-C., Simoyi R.H., Swinney H.L. (1983) Observation of a Strange Attractor. Physica D8:257

    ADS  MathSciNet  Google Scholar 

  13. Gao J., Zheng Z. (1994) Direct Dynamical Test for Deterministic Chaos and Optimal Embedding of a Chaotic Time Series. Phys Rev E49:3807

    ADS  Google Scholar 

  14. Planat M., Giorgano V., Marianneau G., Vernotte F., Mourey M., Eckert C., Miehé J.A. (1996) Is the Frequency Noise of an Oscillator of Deterministic Origin ?. IEEE Trans Ultrason Ferroelec Freq Control 43:326

    Article  Google Scholar 

  15. Eckert C., Planat M., Miehé J.A. (1996) Hidden Order in the Frequency Noise of an Electronic Oscillator. Phys Rev E54:6093

    ADS  Google Scholar 

  16. see the companion paper by Planat M.

    Google Scholar 

  17. Planat M., Dos Santos S., Ratier N., Cresson J., Perrine S. (1999) Close to Resonance Interaction of Radiofrequency Waves in a Schottky Diode Mixer: 1/f Noise and Number Theory. In: Handel P., Chung A. (Eds.) Quantum 1/f Noise and other Low Frequency Fluctuations in Electronic Devices. AIP Proceedings 466:177

    Google Scholar 

  18. Liebert W., Schuster H.G. (1989) Proper Choice of the Time Delay for the Analysis of Chaotic Time Series. Phys Lett A142:107

    ADS  MathSciNet  Google Scholar 

  19. Theiler J. (1990) Estimating Fractal Dimension. J Opt Soc Am A7:1055

    Article  ADS  MathSciNet  Google Scholar 

  20. Liebert W., Pawelzik K., Schuster H.G. (1989) Optimal Embeddings of Chaotic Attractors from Topological Considerations. Europhys Lett 14:521

    Article  ADS  MathSciNet  Google Scholar 

  21. Kennel M.B., Brown R., Abarbanel H.D.I. (1992) Determining Embedding Dimension for Phase-Space Reconstruction using a Geometrical Construction. Phys Rev A45:3403

    ADS  Google Scholar 

  22. Diks C. (1996) Estimating Invariants of Noisy Attractors. Phys Rev E53:R4263

    ADS  MathSciNet  Google Scholar 

  23. Albano A.M., Muench J., Schwartz C., Mees A.I., Rapp P.E. (1988) Singular-Value Decomposition and the Grassberger-Procaccia Algorithm. Phys Rev A38:3017

    ADS  MathSciNet  Google Scholar 

  24. Eckert C., Miehé J.A. (1996) Test of the Deterministic Conjecture for the Instantaneous Time Phase Fluctuations of an Oscillator. Ann Telecommun 51:351

    Google Scholar 

  25. Fredkin D.R., Rice J.A. (1995) Method of False Nearest Neighbours: a Cautionary Note. Phys Rev E51:2950

    ADS  Google Scholar 

  26. Smith L.A. (1988) Intrinsic Limits on Dimension Calculations. Phys Lett A133:283

    ADS  Google Scholar 

  27. Allan D.W. (1987) Time and Frequency (Time Domain) Characterization, Estimation and Prediction of Precision Clocks and Oscillators. IEEE Trans Ultrason Ferroelec Freq Control 34:647

    Article  ADS  Google Scholar 

  28. Kostelich E.J., Yorke J.A. (1990) Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data. Physica D41:183

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eckert, C., Planat, M. (2000). Detection of Chaos in the Noise of Electronic Oscillators by Time Series Analysis Methods. In: Planat, M. (eds) Noise, Oscillators and Algebraic Randomness. Lecture Notes in Physics, vol 550. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45463-2_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-45463-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67572-3

  • Online ISBN: 978-3-540-45463-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics