Advertisement

Detection of Chaos in the Noise of Electronic Oscillators by Time Series Analysis Methods

  • C. Eckert
  • M. Planat
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 550)

Abstract

Frequency fluctuations of an electronic oscillator are studied by time series analysis methods in order to detect an eventual underlying attractor. Measurements are performed by a period counting technique with a reference signal of 10 MHz and various frequencies of the local oscillator. Three different behaviours of the Allan variance are observed, depending on the mean frequency of the beat signal. The results of time series analyses clearly show that two of these behaviours are associated with the presence of a chaotic process, whereas the third is more intricate. When applied to data computed from continued fraction expansions of real numbers, these methods lead to the same conclusions. For two kinds of truncation, the data present a chaotic behaviour, which is not obvious for the third kind. A correspondence between the behaviour of the frequency fluctuations and the way of truncating the continued fraction expansions can thus be proposed.

Keywords

Correlation Dimension Beat Frequency Local Slope Continue Fraction Expansion Allan Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenz E.N. (1963) Deterministic Nonperiodic Flow. J Atmosph Sci 20:130CrossRefADSGoogle Scholar
  2. 2.
    Perera A.G.U., Matsik S.G. (1995) Chaotic to Periodic Spontaneous Pulsing in Current Driven Silicon p-i-n Structures. Physica D84:615Google Scholar
  3. 3.
    Hauck T., Schneider F.W. (1994) Chaos in a Farey Sequence through Period Doubling in the Peroxidase-Oxidase Reaction. J Phys Chem 98:2072CrossRefGoogle Scholar
  4. 4.
    Sugihara G., May R.M. (1990) Nonlinear Forecasting as a Way of Distinguishing Chaos from Measurement Error in Time Series. Nature 344:734CrossRefADSGoogle Scholar
  5. 5.
    Scheinkman J.A., LeBaron B. (1989) Nonlinear Dynamics and Stock Returns. J Business 62:311CrossRefGoogle Scholar
  6. 6.
    Tsonis A.A., Elsner J.B. (1992) Nonlinear Prediction as a Way of Distinguishing Chaos from Random Fractal Sequences. Nature 358:217CrossRefADSGoogle Scholar
  7. 7.
    Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. (1980) Geometry from a Time Series. Phys Rev Lett 45:712CrossRefADSGoogle Scholar
  8. 8.
    Mané R. (1981) On the Dimension of the Compact Invariant Sets of Certain Non-Linear Maps. In: Rand D.A., Young L.S. (Eds.) Dynamical Systems and Turbulence. Springer, Berlin, Lectures Notes in Mathematics 898:230CrossRefGoogle Scholar
  9. 9.
    Takens F. (1981) Detecting Strange Attractors in Turbulence. In: Rand D.A., Young L.S. (Eds.) Dynamical Systems and Turbulence. Springer, Berlin, Lectures Notes in Mathematics 898:366CrossRefGoogle Scholar
  10. 10.
    Grassberger P., Procaccia I. (1983) Measuring the Strangeness of Strange Attractors. Physica D9:189ADSMathSciNetGoogle Scholar
  11. 11.
    Grassberger P., Procaccia I. (1983) Estimation of the Kolmogorov Entropy from a Chaotic Signal. Phys Rev A28:2591ADSGoogle Scholar
  12. 12.
    Roux J.-C., Simoyi R.H., Swinney H.L. (1983) Observation of a Strange Attractor. Physica D8:257ADSMathSciNetGoogle Scholar
  13. 13.
    Gao J., Zheng Z. (1994) Direct Dynamical Test for Deterministic Chaos and Optimal Embedding of a Chaotic Time Series. Phys Rev E49:3807ADSGoogle Scholar
  14. 14.
    Planat M., Giorgano V., Marianneau G., Vernotte F., Mourey M., Eckert C., Miehé J.A. (1996) Is the Frequency Noise of an Oscillator of Deterministic Origin ?. IEEE Trans Ultrason Ferroelec Freq Control 43:326CrossRefGoogle Scholar
  15. 15.
    Eckert C., Planat M., Miehé J.A. (1996) Hidden Order in the Frequency Noise of an Electronic Oscillator. Phys Rev E54:6093ADSGoogle Scholar
  16. 16.
    see the companion paper by Planat M.Google Scholar
  17. 17.
    Planat M., Dos Santos S., Ratier N., Cresson J., Perrine S. (1999) Close to Resonance Interaction of Radiofrequency Waves in a Schottky Diode Mixer: 1/f Noise and Number Theory. In: Handel P., Chung A. (Eds.) Quantum 1/f Noise and other Low Frequency Fluctuations in Electronic Devices. AIP Proceedings 466:177Google Scholar
  18. 18.
    Liebert W., Schuster H.G. (1989) Proper Choice of the Time Delay for the Analysis of Chaotic Time Series. Phys Lett A142:107ADSMathSciNetGoogle Scholar
  19. 19.
    Theiler J. (1990) Estimating Fractal Dimension. J Opt Soc Am A7:1055ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Liebert W., Pawelzik K., Schuster H.G. (1989) Optimal Embeddings of Chaotic Attractors from Topological Considerations. Europhys Lett 14:521CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Kennel M.B., Brown R., Abarbanel H.D.I. (1992) Determining Embedding Dimension for Phase-Space Reconstruction using a Geometrical Construction. Phys Rev A45:3403ADSGoogle Scholar
  22. 22.
    Diks C. (1996) Estimating Invariants of Noisy Attractors. Phys Rev E53:R4263ADSMathSciNetGoogle Scholar
  23. 23.
    Albano A.M., Muench J., Schwartz C., Mees A.I., Rapp P.E. (1988) Singular-Value Decomposition and the Grassberger-Procaccia Algorithm. Phys Rev A38:3017ADSMathSciNetGoogle Scholar
  24. 24.
    Eckert C., Miehé J.A. (1996) Test of the Deterministic Conjecture for the Instantaneous Time Phase Fluctuations of an Oscillator. Ann Telecommun 51:351Google Scholar
  25. 25.
    Fredkin D.R., Rice J.A. (1995) Method of False Nearest Neighbours: a Cautionary Note. Phys Rev E51:2950ADSGoogle Scholar
  26. 26.
    Smith L.A. (1988) Intrinsic Limits on Dimension Calculations. Phys Lett A133:283ADSGoogle Scholar
  27. 27.
    Allan D.W. (1987) Time and Frequency (Time Domain) Characterization, Estimation and Prediction of Precision Clocks and Oscillators. IEEE Trans Ultrason Ferroelec Freq Control 34:647ADSCrossRefGoogle Scholar
  28. 28.
    Kostelich E.J., Yorke J.A. (1990) Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data. Physica D41:183ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • C. Eckert
    • 1
  • M. Planat
    • 2
  1. 1.Laboratoire de Physique et Applications des SemiconducteursCNRSStrasbourg Cedex 2France
  2. 2.Laboratoire de Physique et Métrologie des OscillateursCNRSBesançon CedexFrance

Personalised recommendations