Skip to main content

Schematic Maps for Robot Navigation

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1849))

Abstract

An approach to high-level interaction with autonomous robots by means of schematic maps is outlined. Schematic maps are knowledge representation structures to encode qualitative spatial information about a physical environment. A scenario is presented in which robots rely on high-level knowledge from perception and instruction to perform navigation tasks in a physical environment. The general problem of formally representing a physical environment for acting in it is discussed. A hybrid approach to knowledge and perception driven navigation is proposed. Different requirements for local and global spatial information are noted. Different types of spatial representations for spatial knowledge are contrasted. The advantages of high-level / low-resolution knowledge are pointed out. Creation and use of schematic maps are discussed. A navigation example is presented.

Support by the Deutsche Forschungsgemeinschaft, the International Computer Science Institute, and the Berkeley Initiative in Soft Computing is gratefully acknowledged.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11), 832–843.

    Article  MATH  Google Scholar 

  • Barkowsky, T., & Freksa, C. (1997). Cognitive requirements on making and interpreting maps. In S. Hirtle & A. Frank (Eds.), Spatial information theory: A theoretical basis for GIS (pp. 347–361). Berlin: Springer.

    Chapter  Google Scholar 

  • Berendt, B., Barkowsky, T., Freksa, C., & Kelter S. (1998). Spatial representation with aspect maps. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition-An interdisciplinary approach to representing and processing spatial knowledge (pp. 313–336). Berlin: Springer.

    Google Scholar 

  • Braitenberg, V. (1984). Vehicles-Experiments in synthetic psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brooks, R.A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139–159.

    Article  Google Scholar 

  • Cohn, A. G. (1997). Qualitative spatial representation and reasoning techniques. In G. Brewka, C. Habel, & B. Nebel (Eds.), KI-97: Advances in Artificial Intelligence (pp. 1–30). Berlin: Springer.

    Google Scholar 

  • Dirlich, G., Freksa, C., & Furbach, U. (1983). A central problem in representing human knowledge in artificial systems: the transformation of intrinsic into extrinsic representations. Proc. 5th Cognitive Science Conference. Rochester.

    Google Scholar 

  • Dudeck, G.L. (1996). Environment representation using multiple abstraction levels. Proc. IEEE, 84(11), 1684–1705.

    Article  Google Scholar 

  • Fox, D. (1998). Markov localization: A probabilistic framework for mobile robot localization and navigation. Dissertation, Bonn.

    Google Scholar 

  • Fox, D., Burgard, W., Kruppa, H., & Thrun, S. (1999). Collaborative multi-robot localization. In W. Burgard, T. Christaller, & A. B. Cremers (Eds.), KI-99: Advances in Artificial Intelligence (pp. 255–266). Berlin: Springer.

    Chapter  Google Scholar 

  • Freksa, C. (1992a). Temporal reasoning based on semi-intervals. Artificial Intelligence, 54(1–2), 199–227.

    Article  MathSciNet  Google Scholar 

  • Freksa, C. (1992b). Using orientation information for qualitative spatial reasoning. In A. U. Frank, I. Campari,& U. Formentini (Eds.), Theories and methods of spatio-temporal reasoning in geographic space (pp. 162–178). Berlin: Springer.

    Google Scholar 

  • Freksa, C,& Barkowsky, T. (1999). On the duality and on the integration of propositional and spatial representations. In G. Rickheit & C. Habel (Eds.), Mental models in discourse processing and reasoning (pp. 195–212). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Freksa, C., & Röhrig, R. (1993). Dimensions of qualitative spatial reasoning. In N. Piera Carreté & M. G. Singh (Eds.), Qualitative reasoning and decision technologies, Proc. QUARDET’93, CIMNE Barcelona 1993 (pp. 483–492).

    Google Scholar 

  • Habel, C., Hildebrandt, B., & Moratz, R. (1999). Interactive robot navigation based on qualitative spatial representations. InI Wachsmuth amp; B. Jung (Eds.), KogWis99-Proc. d. 4. Fachtagung der Gesellschaft für Kognitionswissenschaft, Bielefeld (pp. 219–224). St. Augustin: Infix.

    Google Scholar 

  • Habel, C., & Tappe, H. (1999). Processes of segmentation and linearization in describing events. InR. Klabunde & C. von Stutterheim (Eds.), Representations and processes in language production (pp. 117–153). Wiesbaden: Deutscher Universitäts-Verlag.

    Google Scholar 

  • Musto, A., Stein, K., Eisenkolb, A., & Röfer, T. (1999). Qualitative and quantitative representations of locomotion and their application in robot navigation. InT Dean (Ed.), Proceedings IJCAI-99 (pp. 1067–1072). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Palmer, S.E. (1978). Fundamental aspects of cognitive representation. InE. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 259–303). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Röfer, T. (1999). Route naviation using motion analysis. InC. Freksa & D. M. Mark (Eds.), Spatial information theory-Cognitive and computational foundations of geographic information science (pp. 21–36). Berlin: Springer.

    Chapter  Google Scholar 

  • Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104, 192–233.

    Article  Google Scholar 

  • Schlieder, C. (1996). Qualitative shape representation. InP. Burrough & A. Frank (Eds.), Geographic objects with indeterminate boundaries (pp. 123–140). London: Taylor & Francis.

    Google Scholar 

  • Sogo, T., Ishiguro, H., & Ishida, T. (1999). Acquisition of qualitative spatial representation by visual observation. In T. Dean (Ed.), Proceedings IJCAI-99 (pp. 1054–1060). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99, 21–71.

    Article  MATH  Google Scholar 

  • Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox, D., Hähnel, D., Rosenberg, C., Roy, N., Schulte, J., & Schulz, D. (1999). MINERVA: A tour-guide robot that learns. In W. Burgard, T. Christaller, & Cremers, A. B. (Eds.), KI-99: Advances in Artificial Intelligence (pp. 14–26). Berlin: Springer.

    Chapter  Google Scholar 

  • Wallgrün, J. (1999). Partitionierungsbasierte Pfadplanung für autonome mobile Roboter. Studienarbeit, Fachbereich Informatik, Universität Hamburg.

    Google Scholar 

  • Whorf, B.L. (1956). Language, thought, and reality; selected writings. Cambridge, MA: Technology Press of Massachusetts Institute of Technology.

    Google Scholar 

  • Zadeh, L.A. (1999). From computing with numbers to computing with words-From manipulation of measurements to manipulation of perceptions. IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications, 45(1)

    Google Scholar 

  • Zimmermann, K. (1995). Measuring without measures-The Delta-Calculus. In A. U. Frank & W. Kuhn (Eds.), Spatial information theory-A theoretical basis for GIS (pp. 59–67). Berlin: Springer.

    Google Scholar 

  • Zimmermann, K., & Freksa, C. (1996). Qualitative spatial reasoning using orientation, distance, and path knowledge. Applied Intelligence, 6, 49–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freksa, C., Moratz, R., Barkowsky, T. (2000). Schematic Maps for Robot Navigation. In: Freksa, C., Habel, C., Brauer, W., Wender, K.F. (eds) Spatial Cognition II. Lecture Notes in Computer Science(), vol 1849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45460-8_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45460-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67584-6

  • Online ISBN: 978-3-540-45460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics