Skip to main content

Modelling Navigational Knowledge by Route Graphs

  • Chapter
  • First Online:
Spatial Cognition II

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1849))

Abstract

Navigation has always been an interdisciplinary topic of research, because mobile agents of different types are inevitably faced with similar navigational problems. Therefore, human navigation can readily be compared to navigation in other biological organisms or in artificial mobile agents like autonomous robots. One such navigational strategy, route-based navigation, in which an agent moves from one location to another by following a particular route, is the focus of this paper. Drawing on the research from cognitive psychology and linguistics, biology, and robotics, we present a simple, abstract formalism to express the key concepts of route-based navigation in a common scientific language. Starting with the distinction of places and route segments, we develop the notion of a route graph, which can serve as the basis for complex navigational knowledge. Implications and constraints of the model are discussed along the way, together with examples of different instantiations of parts of the model in different mobile agents. By providing this common conceptual framework, we hope to advance the interdisciplinary discussion of spatial navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Able, K. P. (1996). Large-scale navigation. The Journal of Exp. Biology, 199, 1–2.

    Article  Google Scholar 

  • Allen, G.L. (1999). Spatial abilities, cognitive maps, and wayfinding: Bases for individual differences in spatial cognition and behavior. In R. Golledge (ed.), Wayfinding behavior (46–80). Baltimore: Johns Hopkins.

    Google Scholar 

  • Berendt, B., Barkowsky, T., Freksa, C., & Kelter, S. (1998). Spatial representation with aspect maps. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition-An interdisciplinary approach to representing and processing spatial knowledge. Barlin: Springer.

    Google Scholar 

  • Cartwright, B.A. & Collet, T.S. (1983). Landmark Learning in Bees. In Journal of Comparative Physiology, A 151, 521–543.

    Article  Google Scholar 

  • Collet, T.S. & Baron, J. (1994). Biological compasses and the coordinate frame of landmark memories in honeybees. Nature, 368, 137–140.

    Article  Google Scholar 

  • Duckett, T. & Nehmzow, U. (1997). Experiments in evidence based localisation for a mobile robot. In Spatial Reasoning in Mobile Robots and Animals (25–34). Manchester University. AISB-97 Workshop.

    Google Scholar 

  • Etienne, A.S., Maurer, R., Georgakopoulos, J. & Griffin, A. (1999). Dead reckoning (path integration), landmarks, and representation of space in a comparative perspective. In R. Golledge (ed.), Wayfinding behavior (197–228). Baltimore: Johns Hopkins.

    Google Scholar 

  • Eschenbach, C., Tschander, L., Habel, C., & Kulik, L. (2000). The specifications of paths. This issue.

    Google Scholar 

  • Franz, M. O., Schölkopf, B., Georg, P., Mallot, H. A., and Bülthoff, H. H. (1997). Learning view graphs for robot navigation. In W. L. Johnson (ed.), Proc. 1st Int. Conf. on Autonomous Agents (138–147). New York. ACM Press.

    Chapter  Google Scholar 

  • Fu, D.D., Hammond, K.J., & Swain, M.J. (1996). Navigation for everyday life. Technical Report 96-03. Dept. of Computer Science, University of Chicago.

    Google Scholar 

  • Gillner, S. & Mallot, H.A. (1998) Navigation and acquisition of spatial knowledge in a virtual maze. Journal of Cognitive Neuroscience, 10, 445–463.

    Article  Google Scholar 

  • Golledge, R.G. (1999). Human wayfinding and cognitive maps. In R. Golledge (Ed.), Way-finding behavior (5–45). Baltimore: Johns Hopkins.

    Google Scholar 

  • Gutmann, J.-S. & Nebel, B. (1997). Navigation mobiler Roboter mit Laserscans. In P. Levi, T. Bräunl, and N. Oswald (eds.), Autonome Mobile Systeme (36–47). Informatik aktuell, Berlin, Heidelberg New York. Springer.

    Google Scholar 

  • Habel, C. (1988). Prozedurale Aspekte der Wegplanung und Wegbeschreibung. In H. Schnelle & G. Rickheit (eds.), Sprache in Mensch und Computer (107–133). Opladen: Westdeutscher Verlag.

    Google Scholar 

  • Herrmann, Th., Buhl, H.M. & Schweizer, K. (1995). Zur blickpunktbezogenen Wissensrepräsentation: der Richtungseffekt. Zeitschrift für Psychologie, 203, 1–23.

    Google Scholar 

  • Judd, S.P.D., Dale, K., & Collett, T.S. (1999). On the fine-structure of view-based navigation in insects. In R. Golledge (ed.), Wayfinding behavior (229–258). Baltimore: Johns Hopkins.

    Google Scholar 

  • Krieg-Brückner, B. (1998). A Taxonomy of Spatial Knowledge for Navigation. In: Schmid, U., Wysotzki, F. (Eds.). Qualitative and Quantitative Approaches to Spatial Inference and the Analysis of Movements. Technical Report, 98-2, Technische Universität Berlin, Computer Science Department.

    Google Scholar 

  • Krieg-Brückner, B., Röfer, T., Carmesin, H.-O., Müller, R. (1998). A Taxonomy of Spatial Knowledge for Navigation and its Application to the Bremen Autonomous Wheelchair. In Freksa, Ch., Habel, Ch., Wender, K. F. (Eds.), Spatial Cognition. Lecture Notes in Artificial Intelligence 1404 (373–397). Springer.

    Google Scholar 

  • Kuipers, B. (1998). A hierarchy of qualitative representations for space. In Freksa, Ch., Habel, Ch., Wender, K. F. (Eds.), Spatial Cognition. Lecture Notes in Artificial Intelligence 1404. Barlin: Springer.

    Chapter  Google Scholar 

  • Kuipers, B. J. & Byun, Y.-T. (1991). A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems, 8, 47–63.

    Article  Google Scholar 

  • Loomis, J.M, Klatzky, R.L., Golledge, R.G., & Philbeck, J.W. (1999). Human navigation by path integration. In R. Golledge (ed.), Wayfinding behavior (125–151). Baltimore: Johns Hopkins.

    Google Scholar 

  • Lynch, K. (1960). The Image of the City. Cambridge: MIT-Press.

    Google Scholar 

  • McDonald, T.P. & Pellegrino, J.W. (1993). Psychological perspectives on spatial cognition. In T. Gärling & R.G. Golledge (Eds.), Behavior and Environment: Psychological and geographical approaches, p. 47–82. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Möller, R., Lambrinos, D., Pfeifer, R., Wehner, R., & Labhart, T. (1998). Modeling Ant Navigation with an Autonomous Agent. In: From Animals to Animats, Proc. Fifth International Conference of The Society for Adaptive Behavior (185–194). MIT Press.

    Google Scholar 

  • Montello, D.R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In M. Egenhofer & R.G. Golledge (Eds.), Spatial and temporal reasoning in Geographic Information Systems (143–154). Oxford University Press.

    Google Scholar 

  • Musto, A., Stein, K., Eisenkolb, A., Röfer, T. (1999). Qualitative and Quantitative Representations of Locomotion and their Application in Robot Navigation. In: Proc. of the 16th International Joint Conference on Artificial Intelligence (1067–1073). Morgan Kaufman Publishers, Inc. San Francisco, CA.

    Google Scholar 

  • Nigro, G. & Neisser, U. (1983). Point of view in personal memories. Cognitive Psychology, 15, 467–482.

    Article  Google Scholar 

  • O’Keefe, J. & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press.

    Google Scholar 

  • Poucet, B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review, 100, 163–182.

    Article  Google Scholar 

  • Röfer, T. (1998). Panoramic Image Processing and Route Navigation. PhD thesis. BISS Monographs 7. Shaker-Verlag.

    Google Scholar 

  • Röfer, T. (1999). Route Navigation Using Motion Analysis. In: Freksa, C., Mark, D. M. (Eds.), Spatial Information Theory, Proc. COSIT‘’99. Lecture Notes in Computer Science, 1661, 21–36. Barlin: Springer.

    Google Scholar 

  • Rothkegel, R., Wender, K.F., & Schumacher, S. (1998). Judging spatial relations from memory. Freksa, Ch., Habel, Ch., Wender, K. F. (Eds.): Spatial Cognition. Lecture Notes in Artificial Intelligence 1404. Barlin: Springer. (79–106).

    Chapter  Google Scholar 

  • Saade, C. & Werner, S. (in press). Flexibilität mentaler Repräsentationen räumlicher Information in Abhängigkeit von der Erwerbsperspektive. Zeitschrift für Exp. Psychologie

    Google Scholar 

  • Sadalla, E.K., Staplin, L.J., & Burroughs, W.J. (1979). Retrieval processes in distance cognition. Environment and Behavior, 12, 167–182.

    Article  Google Scholar 

  • Schölkopf, B. and Mallot, H. A. (1995). View-based cognitive mapping and planning. In Adaptive Behavior 3 (311–348).

    Article  Google Scholar 

  • Schweizer, K., Herrmann, T., Janzen, G., & Katz, S. (1998). The route direction effect and its constraints. In C. Freksa, C. Habel & K.F. Wender (eds.), Spatial Cognition. Lecture Notes in Artificial Intelligence 1404, 19–38. Barlin: Springer.

    Chapter  Google Scholar 

  • Shemyakin, F.N. (1962). Orientation in space. In B.G. Anan’yev et al. (Hrsg.),Psychological Science in the U.S.S.R: (Bd. 1, S. 186–255). Washington, D.C.: U.S.Department of commerce, Office of Technical Services.

    Google Scholar 

  • Siegel, A.W. & White, S.H. (1975). The development of spatial representations of large-scale environments. In H.W. Reese (Ed.), Advances in Child Development and Behavior (vol. 10, S. 9–55). New York: Academic.

    Google Scholar 

  • Thorndyke, P.W. & Hayes-Roth, B. (1982). Differences in spatial knowledge ayquired from maps and navigation. Cognitive Psychology, 14, 560–589.

    Article  Google Scholar 

  • Trullier, O., Wiener, S. I., Bertholz, A., and Meyer, J.-A. (1997). Biogically based artificial navigation systems: Review and prospects. Progress in Neurobiology, 51, 483–544.

    Article  Google Scholar 

  • Tversky, B. & Lee, P.U. (1998). How space structures language. In C. Freksa, C. Habel & K. F. Wender (eds.), Spatial Cognition (157–175). Barlin: Springer.

    Chapter  Google Scholar 

  • v. Frisch, K. (1967). The dance language and orientation of bees. Oxford University Press, London.

    Google Scholar 

  • Wehner, R. & Menzel, R. (1990). Do insects have cognitive maps? Ann. Rev. Neuroscience. 13, 403–413.

    Google Scholar 

  • Wehner, R., Michel, B., & Antonsen, P. (1996). Visual navigation in insects: Coupling of egocentric and geocentric information. The Journal of Experimental Biology, 199, 129–140.

    Google Scholar 

  • Werner, S., Krieg-Brückner, B., Mallot, H.A., Schweizer, K., & Freksa, C. (1997). Spatial cognition: The role of landmark, route, and survey knowledge in human and robot navigation. In M. Jarke, K. Pasedach, & K. Pohl (eds.), Informatik’ 97 (41–50). Barlin: Springer.

    Google Scholar 

  • Wiltschko, R. & Wiltschko, W. (1999). Compass orientation as a basic element in avian orientation and navigation. In R. Golledge (ed.), Wayfinding behavior (259–293). Baltimore: Johns Hopkins.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Werner, S., Krieg-Brückner, B., Herrmann, T. (2000). Modelling Navigational Knowledge by Route Graphs. In: Freksa, C., Habel, C., Brauer, W., Wender, K.F. (eds) Spatial Cognition II. Lecture Notes in Computer Science(), vol 1849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45460-8_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-45460-8_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67584-6

  • Online ISBN: 978-3-540-45460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics