Skip to main content

A Higher-Rank Mersenne Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2369))

Abstract

The classical Mersenne problem has been a stimulating challenge to number theorists and computer scientists for many years. After briefly reviewing some of the natural settings in which this problem appears as a special case, we introduce an analogue of the Mersenne problem in higher rank, in both a classical and an elliptic setting. Numerical evidence is presented for both cases, and some of the difficulties involved in developing even a heuristic understanding of the problem are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. T. Bateman, J. L. Selfridge, and S. S. Wagstaff, Jr. The new Mersenne conjecture. Amer. Math. Monthly, 96(2):125–128, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. G. Brown. A note on Ramanujan’s conjectures regarding “Mersenne’s primes”. Austral. Math. Soc. Gaz., 24(4):146–147, 1997.

    MATH  MathSciNet  Google Scholar 

  3. Chris Caldwell. The prime pages. http://www.utm.edu/research/primes/.

  4. D. V. Chudnovsky and G. V. Chudnovsky. Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Adv. in Appl. Math., 7(4):385–434, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. V. Chudnovsky and G. V. Chudnovsky. Computer assisted number theory with applications. In Number theory (New York, 1984–1985), pages 1–68. Springer, Berlin, 1987.

    Google Scholar 

  6. Manfred Einsiedler, Graham Everest, and Thomas Ward. Primes in sequences associated to polynomials (after Lehmer). LMS J. Comput. Math., 3:125–139 (electronic), 2000.

    MATH  MathSciNet  Google Scholar 

  7. Manfred Einsiedler, Graham Everest, and Thomas Ward. Primes in elliptic divisibility sequences. LMS J. Comput. Math., 4:1–13 (electronic), 2001.

    MATH  MathSciNet  Google Scholar 

  8. Manfred Einsiedler, Graham Everest, and Thomas Ward. Entropy and the canonical height. J. Number Theory, 91:256–273, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  9. Graham Everest and Thomas Ward. A dynamical interpretation of the global canonical height on an elliptic curve. Experiment. Math., 7(4):305–316, 1998.

    MATH  MathSciNet  Google Scholar 

  10. Graham Everest and Thomas Ward. Heights of polynomials and entropy in algebraic dynamics. Springer-Verlag London Ltd., London, 1999.

    MATH  Google Scholar 

  11. Shalom Feigelstock. Mersenne primes and group theory. Math. Mag., 49(4):198–199, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  12. Paul H. Frampton and Thomas W. Kephart. Mersenne primes, polygonal anomalies and string theory classification. Phys. Rev. D (3), 60(8):087901, 4, 1999.

    Article  MathSciNet  Google Scholar 

  13. Donald B. Gillies. Three new Mersenne primes and a statistical theory. Math. Comp., 18:93–97, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. The Clarendon Press Oxford University Press, New York, fifth edition, 1979.

    MATH  Google Scholar 

  15. Neal Koblitz. p-adic numbers, p-adic analysis, and zeta-functions. Springer-Verlag, New York, second edition, 1984.

    Google Scholar 

  16. D.H. Lehmer. Factorization of certain cyclotomic functions. Ann. of Math. 34 (1933) 461–479.

    Article  MathSciNet  Google Scholar 

  17. D. A. Lind. A zeta function for ℤd-actions. In Ergodic theory of ℤ d actions (Warwick, 1993–1994), pages 433–450. Cambridge Univ. Press, Cambridge, 1996.

    Google Scholar 

  18. Douglas Lind, Klaus Schmidt, and Tom Ward. Mahler measure and entropy for commuting automorphisms of compact groups. Invent. Math., 101(3):593–629, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  19. Albert A. Mullin. Letter to the editor: “The new Mersenne conjecture” [Amer. Math. Monthly 96 (1989), no. 2, 125–128; MR 90c:11009] by P. T. Bateman, J. L. Selfridge and S. S. Wagstaff, Jr. Amer. Math. Monthly, 96(6):511, 1989.

    Article  MathSciNet  Google Scholar 

  20. Yash Puri and Thomas Ward. Arithmetic and growth of periodic orbits. J. Integer Seq., 4(1):Article 01.2.1, 17 pp. (electronic), 2001.

    Google Scholar 

  21. J. H. Sampson. Sophie Germain and the theory of numbers. Arch. Hist. Exact Sci., 41(2):157–161, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  22. Klaus Schmidt. Dynamical systems of algebraic origin. Birkhäuser Verlag, Basel, 1995.

    MATH  Google Scholar 

  23. Rachel Shipsey. Elliptic Divisibility Sequences. PhD thesis, University of London, 2003.

    Google Scholar 

  24. Joseph H. Silverman. The arithmetic of elliptic curves. Springer-Verlag, New York, 1992. Corrected reprint of the 1986 original.

    Google Scholar 

  25. Samuel S. Wagstaff, Jr. Divisors of Mersenne numbers. Math. Comp., 40(161):385–397, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  26. Thomas Ward. An uncountable family of group automorphisms, and a typical member. Bull. London Math. Soc., 29(5):577–584, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  27. Thomas Ward. Almost all S-integer dynamical systems have many periodic points. Ergodic Theory Dynam. Systems, 18(2):471–486, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  28. André Weil. Basic number theory. Springer-Verlag, New York, third edition, 1974. Die Grundlehren der Mathematischen Wissenschaften, Band 144.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Everest, G., Rogers, P., Ward, T. (2002). A Higher-Rank Mersenne Problem. In: Fieker, C., Kohel, D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45455-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43863-2

  • Online ISBN: 978-3-540-45455-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics