Skip to main content

Factoring N = pq 2 with the Elliptic Curve Method

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2369))

Included in the following conference series:

Abstract

Various cryptosystems have been proposed whose security relies on the difficulty of factoring integers of the special form N = pq 2. To factor integers of that form, Peralta and Okamoto introduced a variation of Lenstra’s Elliptic Curve Method (ECM) of factorization, which is based on the fact that the Jacobi symbols (a/N) and (a/P) agree for all integers a coprime with q. We report on an implementation and extensive experiments with that variation, which have been conducted in order to determine the speed-up compared with ECM for numbers of general form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bach and R. Peralta. Asymptotic semismoothness probabilities. Mathematics of Computation, 65:1701–1715, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. P. Brent. An improved Monte Carlo factorization algorithm. BIT, 20:176–184, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  4. R. Crandall and C. Pomerance. Prime Numbers. A Computational Perspective. Springer-Verlag New York, 2001.

    Google Scholar 

  5. E. Fujisaki, T. Kobayashi, H. Morita, H. Oguro, T. Okamoto, S. Okazaki, D. Pointcheval, and S. Uchiyama. EPOC — efficient probabilistic public-key encryption. Submission to NESSIE, 2000. https://www.cosic.esat.-kuleuven.ac.be/nessie/workshop/submissions.html.

  6. B. Harris. Probability distributions related to random mappings. Annals of Math. Statistics, 31:1045–1062, 1960.

    Article  MATH  Google Scholar 

  7. D. Hühnlein. Quadratic orders for NESSIE — overview and parameter sizes of three public key families. Technical Report TI-3/00, TU Darmstadt, Germany, 2000. http://www.informatik.tu-darmstadt.de/TI/-Veroeffentlichung/TR/Welcome.html.

    Google Scholar 

  8. H. W. Lenstra, Jr. Factoring integers with elliptic curves. Ann. of Math., 126:649–673, 1987.

    Article  MathSciNet  Google Scholar 

  9. A. K. Lenstra. Unbelievable security. Matching AES security using public key cryptosystems. In Advances in Cryptology-ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

    Chapter  Google Scholar 

  10. LiDIA Group, Technische Universität Darmstadt, Darmstadt, Germany. LiDIA-A library for computational number theory, Version 2.0, 2000.

    Google Scholar 

  11. S. Meyer Eikenberry and J. P. Sorenson. Efficient algorithms for computing the Jacobi symbol. Journal of Symbolic Computation, 26:509–523, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Montgomery. An FFT extension of the elliptic curve method of factorization. PhD thesis, University of California, Los Angeles, 1992.

    Google Scholar 

  13. A. Müller. Eine FFT-Continuation für die elliptische Kurvenmethode. Master’s thesis, Universität des Saarlandes, Saarbrücken, Germany, 1995. Diplomarbeit.

    Google Scholar 

  14. A. Menezes, P. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.

    Google Scholar 

  15. R. Peralta. Elliptic curve factorization using a “partially oblivious” function. In K.-Y. Lam, I. Shparlinski, H. Wang, and C. Xing, editors, Cryptography and Computational Number Theory: Workshop in Singapore 1999, volume 20 of Progress in Computer Science and Applied Logic, pages 123–128. Birkhäuser, 2001.

    Google Scholar 

  16. R. Peralta and E. Okamoto. Faster factoring of integers of a special form. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, E79-A(4), 1996.

    Google Scholar 

  17. Pol. J. M. Pollard. Private communication, February 2002.

    Google Scholar 

  18. J. M. Pollard. A Monte Carlo method for factorization. BIT, 15(3):331–335, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computation, 32(143):918–924, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Takagi. Fast RSA-type cryptosystem modulo p k q. In Advances in Cryptology-CRYPTO’ 98, volume 1462 of Lecture Notes in Computer Science, pages 318–326. Springer-Verlag, 1998.

    Chapter  Google Scholar 

  21. E. Teske. A space efficient algorithm for group structure computation. Mathematics of Computation, 67:1637–1663, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Teske. Speeding up Pollard’s rho method for computing discrete logarithms. In Algorithmic Number Theory Seminar ANTS-III, volume 1423 of Lecture Notes in Computer Science, pages 541–554. Springer-Verlag, 1998.

    Chapter  Google Scholar 

  23. E. Teske. On random walks for Pollard’s rho method. Mathematics of Computation, 70:809–825, 2001.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ebinger, P., Teske, E. (2002). Factoring N = pq 2 with the Elliptic Curve Method. In: Fieker, C., Kohel, D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-45455-1_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43863-2

  • Online ISBN: 978-3-540-45455-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics