Skip to main content

Comparing Invariants for Class Fields of Imaginary Quadratic Fields

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2369))

Included in the following conference series:

Abstract

Class fields of imaginary quadratic number fields can be constructed from singular values of modular functions, called class invariants. From a computational point of view, it is desirable that the associated minimal polynomials be small. We examine different approaches to measure the size of the polynomials. Based on experimental evidence, we compare two families of class invariants suggested in the literature with respect to these criteria. Our results lead to more efficient constructions of elliptic curves for cryptography or in the context of elliptic curve primality proving (ECPP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. O. L. Atkin. The number of points on an elliptic curve modulo a prime. Draft, 1988.

    Google Scholar 

  2. A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp., 61(203):29–68, July 1993.

    Google Scholar 

  3. B. J. Birch. Weber’s class invariants. Mathematika, 16:283–294, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. M. Borwein and P. B. Borwein. Pi and the AGM. John Wiley, 1987.

    Google Scholar 

  5. N. Brisebarre and G. Philibert. Effective lower and upper bounds for the Fourier coefficients of powers of the modular invariant j. In preparation, January 2002.

    Google Scholar 

  6. H. Cohen. Advanced topics in computational number theory, volume 193 of Graduate Texts in Mathematics. Springer-Verlag, 2000.

    Google Scholar 

  7. R. Dedekind. Erläuterungen zu den vorstehenden Fragmenten. In R. Dedekind and H. Weber, editors, Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlaβ, pages 438–447. Teubner, Leipzig, 1876.

    Google Scholar 

  8. A. Enge and F. Morain. Further investigations of the generalised Weber functions. In preparation, 2001.

    Google Scholar 

  9. A. Enge and R. Schertz. Constructing elliptic curves from modular curves of positive genus. In preparation, 2001.

    Google Scholar 

  10. A. Enge and R. Schertz. Modular curves of composite level. In preparation, 2001.

    Google Scholar 

  11. Robert Fricke. Lehrbuch der Algebra, volume III-Algebraische Zahlen. Vieweg, Braunschweig, 1928.

    Google Scholar 

  12. A. Gee. Class invariants by Shimura’s reciprocity law. J. Th’eor. Nombres Bordeaux, 11:45–72, 1999.

    MATH  MathSciNet  Google Scholar 

  13. A. Gee and P. Stevenhagen. Generating class fields using Shimura reciprocity. In J. P. Buhler, editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in Comput. Sci., pages 441–453. Springer-Verlag, 1998. Third International Symposium, ANTS-III, Portland, Oregon, june 1998, Proceedings.

    Google Scholar 

  14. G. Hanrot and F. Morain. Solvability by radicals from a practical algorithmic point of view. Submitted. Available from http://www.lix.polytechnique.fr/-Labo/Francois.Morain/, November 2001.

  15. G. Hanrot and F. Morain. Solvability by radicals from an algorithmic point of view. In B. Mourrain, editor, Symbolic and algebraic computation, pages 175–182. ACM, 2001. Proceedings ISSAC’2001, London, Ontario.

    Google Scholar 

  16. Marc Hindry and Joseph H. Silverman. Diophantine Geometry — An Introduction. Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  17. Carl Gustav Jacob Jacobi. Fundamenta nova theoriae functionum ellipticarum. In Gesammelte Werke, pages 49–239. Chelsea, New York, 2 (1969) edition, 1829.

    Google Scholar 

  18. Felix Klein. Uber die Transformationsgleichung der elliptischen Funktionen und die Auflösung der Gleichungen fünften Grades. Math. Annalen, 14:111–172, 1878. Gesammelte Mathematische Abhandlungen III:13–75.

    Article  Google Scholar 

  19. D. Kohel. CM divisors on modular curves. In preparation, January 2002.

    Google Scholar 

  20. C. Meyer. Bemerkungen zum Satz von Heegner-Stark über die imaginärquadratischen Zahlkörper mit der Klassenzahl Eins. J. Reine Angew. Math., 242:179–214, 1970.

    MATH  MathSciNet  Google Scholar 

  21. F. Morain. Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques. J. Théor. Nombres Bordeaux, 7:255–282, 1995.

    MATH  MathSciNet  Google Scholar 

  22. F. Morain. Primality proving using elliptic curves: an update. In J. P. Buhler, editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in Comput. Sci., pages 111–127. Springer-Verlag, 1998. Third International Symposium, ANTS-III, Portland, Oregon, june 1998, Proceedings.

    Google Scholar 

  23. F. Morain. Modular curves and class invariants. Preprint, June 2000.

    Google Scholar 

  24. R. Schertz. Die singulären Werte der Weberschen Funktionen f, f1, f2, γ2, γ3. J. Reine Angew. Math., 286/287:46–74, 1976.

    MathSciNet  Google Scholar 

  25. R. Schertz. Weber’s class invariants revisited. To appear in J. Théor. Nombres Bordeaux, 2001.

    Google Scholar 

  26. Reinhard Schertz. Zur expliziten Berechnung von Ganzheitsbasen in Strahlklassenkörpern über einem imaginär-qudratischen Zahlkörper. Journal of Number Theory, 34(1):41–53, January 1990.

    Google Scholar 

  27. Goro Shimura. Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Shoten and Princeton University Press, 1971.

    Google Scholar 

  28. J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Grad. Texts in Math. Springer, 1986.

    Google Scholar 

  29. J. H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves, volume 151 of Grad. Texts in Math. Springer-Verlag, 1994.

    Google Scholar 

  30. H. M. Stark. Counting points on CM elliptic curves. Rocky Mountain J. Math., 26(3):1115–1138, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Weber. Lehrbuch der Algebra, volume III. Chelsea Publishing Company, New York, 1908.

    Google Scholar 

  32. N. Yui and D. Zagier. On the singular values of Weber modular functions. Math. Comp., 66(220):1645–1662, October 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Enge, A., Morain, F. (2002). Comparing Invariants for Class Fields of Imaginary Quadratic Fields. In: Fieker, C., Kohel, D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45455-1_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43863-2

  • Online ISBN: 978-3-540-45455-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics