Advertisement

Compact Representation of Domain Parameters of Hyperelliptic Curve Cryptosystems

  • Fangguo Zhang
  • Shengli Liu
  • Kwangjo Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2384)

Abstract

To achieve the same level of security, hyperelliptic curve cryptosystems (HCC) use a smaller field than elliptic curve cryptosystems (ECC). HCC has a more potential application to the product that has limited memory and computing power, for instance Smart cards. We discussed how to represent the domain parameters of HCC in a compact way. The domain parameters include the field over which the curve is defined, the curve itself, the order of the Jocobian and the base point. In our method, the representation of HCC with genus g=4 over F 241 (It can provide the same level of security with 164 bits ECC) only uses 339 bits.

Keywords

Hyperelliptic curve cryptosystems (HCC) Jacobian Domain parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Adleman, J. De Marrais, M.-D Huang, A Subexponential Algorithm for Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus Hyperelliptic Curves over Finite Fields, in ANTS-1, Algorithmic Number Theory, Editors L.M. Adlemand and M-D. Huang, Springer-Verlag, LNCS 877, pp. 28–40, 1994.Google Scholar
  2. 2.
    L. Adleman, M.-D Huang, Counting rational points on curves and abelian varieties over finite fields, In ANTS-2:, LNCS 1122, Springer-Verlag, pp. 1–16, 1996.Google Scholar
  3. 3.
    D.G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Mathematics of Computation, Volume 48, pp. 95–101, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Frey and H. Rück, A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves, Mathematics of Computation, 62, pp. 865–874, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S.D. Galbraith, Supersingular curves in cryptography. Available at http://www.cs.bris.ac.uk/stenve
  6. 6.
    S.D. Galbraith, Weil descent of Jacobians. Presented at WCC 2001. Available at http://www.cs.bris.ac.uk/stenve.
  7. 7.
    P. Gaudry, An algorithm for solving the discrete log problem on hyperelliptic curves, In B. Preneel(ed.), Eurocrypt 2000, LNCS 1807, Springer-Verlag, pp. 19–34, 2000.CrossRefGoogle Scholar
  8. 8.
    P. Gaudry and R. Harley, Counting Points on Hyperelliptic Curves over finite fields. Available at http://www.cs.bris.ac.uk/Tools/Reports/Abstract/2000-gaudry.htm
  9. 9.
    D.E. Knuth, and E. Donald E., Seminumerical Algorithms, Addison-Wesley, 1981.Google Scholar
  10. 10.
    N. Koblitz, Elliptic Curve Crypto systems, Mathematics of Computation, 48, pp. 203–209, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    N. Koblitz, Hyperelliptic cryptography, J.of Crypto., No. 1, pp. 139–150, 1989.Google Scholar
  12. 12.
    P. Lockhart, On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc. 342 No. 2, pp. 729–752, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    A. Menezes, Y. Wu, R. Zuccherato, An Elementary Introduction to Hyperelliptic Curves. In: Koblitz, N., Algebraic Aspects of Cryptography, Springer-Verlag Berlin Heidelberg 1998. Available at http://www.cacr.math.uwaterloo.ca/techreports/ 1997/techreports97.html Google Scholar
  14. 14.
    V.S. Miller, Use of Elliptic Curve in Cryptography, In Advances in Cryptology-CRYPTO’85 (Santa Barbara,Calif.,1985), LNCS. 218, Spring-Verlag, pp. 417–426, 1986.Google Scholar
  15. 15.
    J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite fields. Math.Comp., 55, pp. 745–763, 1996.CrossRefMathSciNetGoogle Scholar
  16. 16.
    H.G. Rück, On the discrete logarithms in the divisor class group of curves, Math.Comp., 68, pp. 805–806, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    T. Satoh, Canonical Lifting of Elliptic Curves and p-Adic Point Counting-Theoretical Background, Workshop on Elliptic Curve Cryptography-ECC’00, 2000. Available at http://www.exp-math.uni-essen.de/ galbra/eccslides/eccslides.html
  18. 18.
    T. Satoh, and K. Araki, Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, Commentari Math. Univ. St. Pauli 47 (1998), 81–92.zbMATHMathSciNetGoogle Scholar
  19. 19.
    I.A. Semaev, Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p, Mathematics of Computation 67 (1998), 353–356.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    J. Scholten, and Huijun Zhu, Hyperelliptic Supersingular Curves over Fields of Characteristic 2. Available at http://www.math.berkeley.edu/ zhu/preprints.html
  21. 21.
    N.P. Smart, The discrete logarithms problem on elliptic curves of trace one, Journal of Cryptology 12 (1999), 193–196.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    N.P. Smart, Compressed ECC Parameters. Available at http://www.secg.org/collateral/compressed_ecc.pdf
  23. 23.
    J.A. Solinas, Generalized Mersenne number, Technical Reports, CACR, Waterloo, 1999. Available at: http://www.cacr.math.uwaterloo.ca/techreports/1999/tech_reports99.html Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Fangguo Zhang
    • 1
  • Shengli Liu
    • 2
  • Kwangjo Kim
    • 1
  1. 1.International Research center for Information Security (IRIS)Information and Communications University(ICU)TaejeonKorea
  2. 2.Dept. of Computer ScienceShanghai Jiaotong UniversityShanghaiP.R.China

Personalised recommendations