Advertisement

Geometric Parameters of Kernel Machines

  • Shahar Mendelson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2375)

Abstract

We investigate the fat-shattering dimension and the localized Rademacher averages of kernel machines and their connection to the eigenvalues associated with the kernel.

Keywords

Unit Ball Absolute Constant Reproduce Kernel Hilbert Space Exponential Tail Entropy Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ball: Volumes of sections on cubes and related problems, in Lecture Notes in Mathematics 1470, 36–47, Springer Berlin.Google Scholar
  2. 2.
    P. L. Bartlett, O. Bousquet, S. Mendelson: Localized Rademacher Averages, these proceedings.Google Scholar
  3. 3.
    F. Cucker, S. Smale: On the mathematical foundations of learning, preprint.Google Scholar
  4. 4.
    V. De la Peña, E. Giné: Decoupling: from dependence to independence, Springer, 1999.Google Scholar
  5. 5.
    P. Massart: About the constants in Talagrand’s concentration inequality for empirical processes, Annals of Probability, 28(2) 863–884, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Mendelson: Rademacher averages and phase transitions in Glivenko-Cantelli classes, IEEE transactions on Information Theory, Jan, 2002.Google Scholar
  7. 7.
    S. Mendelson: Improving the sample complexity using global data, to appear, IEEE transactions on Information Theory.Google Scholar
  8. 8.
    S. Mendelson, R. Vershynin: Entropy, Combinatorial Dimensions and Random Averages, these proceedings.Google Scholar
  9. 9.
    M. Meyer, A. Pajor: Sections of the unit ball of l p n, Journal of Functional Analysis 80(1), 109–123, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    V. D. Milman, G. Schechtman: Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Mathematics 1200, Springer 1986.Google Scholar
  11. 11.
    G. Pisier: The volume of convex bodies and Banach space geometry, Cambridge University Press, 1989.Google Scholar
  12. 12.
    M. Talagrand: Sharper bounds for Gaussian and empirical processes, Annals of Probability, 22(1), 28–76, 1994.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. W. Van der Vaart, J.A. Wellner: Weak convergence and Empirical Processes, Springer-Verlag, 1996.Google Scholar
  14. 14.
    R. C. Williamson, B. Scheolkopf, A. Smola: Generalization performance of regularization networks and support vector machines via entropy numbers of compact networks, IEEE transactions on Information Theory.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Shahar Mendelson
    • 1
  1. 1.Computer Sciences Laboratory, RSISEThe Australian National UniversityCanberraAustralia

Personalised recommendations