Spatial and Cognitive Simulation with Multi-agent Systems

  • Andrew U. Frank
  • Steffen Bittner
  • Martin Raubal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2205)


The simulation of human behavior in space is an extremely interesting and powerful research method to advance our understanding of human spatial cognition and the interaction of human beings with the environment. Multi-agent systems are an emerging computing paradigm for the construction of such simulations. During the last two years, we have used multiagent simulations for three different investigations of spatial and cognitive questions:
  • use of signage in airports to guide travelers to the gate,

  • communication with maps,

  • linkage between physical reality and the cadastral (legal) system.

In this paper we will report on these efforts. We first discuss the concept of multi-agent systems and explain the special type of multi-agent system used for simulation of cognitive and spatial situations. The following three sections each review one of the three simulations we have constructed. The last section identifies the similarities in these approaches and lists questions we hope to investigate in the future with this method.


Spatial cognition multi-agent simulation computational models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benenson, I. and J. Portugali: Internal vs. external spatial information and cultural emergence in a self-organising city. In: A.U. Frank and W. Kuhn (eds.), Spatial Information Theory–A Theoretical Basis for GIS (Int. Conference COSIT’ 95), Springer-Verlag, Berlin Heidelberg (1995) 431–441.Google Scholar
  2. 2.
    Bittner, S.: An agent-based model of reality in a cadastre. Ph.D. thesis, Department of Geoinformation, Technical University Vienna, (to appear).Google Scholar
  3. 3.
    Bond, A.H. and L. Gasser: Readings in Distributed Artificial Intelligence. Morgan Kaufmann (1988).Google Scholar
  4. 4.
    Couclelis, H.: People Manipulate Objects (but Cultivate Fields): Beyond the Raster-Vector Debate in GIS. In: A.U. Frank, I. Campari and U. Formentini (eds.), Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, Springer-Verlag, Berlin Heidelberg (1992) 65–77.Google Scholar
  5. 5.
    Couclelis, H. and N. Gale: Space and Spaces. Geografiske Annaler 68B (1986) 1–12.CrossRefGoogle Scholar
  6. 6.
    Davis, E.: Representation of Commonsense Knowledge. Morgan Kaufmann Publishers, San Mateo, CA (1990).Google Scholar
  7. 7.
    Epstein, J.M. and R. Axtell: Growing Artificial Societies. Brookings Institution Press, Washington, D.C. (1996).Google Scholar
  8. 8.
    Ferber, J.: Multi-Agent Systems. An Introduction to Distributed Artificial Intelligence. Addison-Wesley (1999).Google Scholar
  9. 9.
    Frank, A.U.: Communication with maps: A formalized model. In: C. Freksa, et al. (eds.), Spatial Cognition II (Int. Workshop on Maps and Diagrammatical Representations of the Environment, Hamburg, August 1999), Springer-Verlag, Berlin Heidelberg (2000) 80–99.CrossRefGoogle Scholar
  10. 10.
    Frank, A.U.: An object-oriented, formal approach to the design of cadastral systems. In: 7th Int. Symposium on Spatial Data Handling, SDH’ 96, Delft, The Netherlands. IGU (1996) Vol. 1.5A.19–5A.35.Google Scholar
  11. 11.
    Gat, E.: On Three-Layer Architectures. In: D. Kortenkamp et al. (eds.), Artificial Intelligence and Mobile Robots, AAAI Press (1998).Google Scholar
  12. 12.
    Gibson, J.: The Ecological Approach to Visual Perception. Erlbaum, Hillsdale, NJ (1979).Google Scholar
  13. 13.
    Gilbert, D., et al.: The Role of Intelligent Agents in the Information Infrastructure (1995).Google Scholar
  14. 14.
    Golledge, R. (ed.) Wayfinding Behavior–Cognitive Mapping and Other Spatial Processes. Johns Hopkins University Press, Baltimore (1999).Google Scholar
  15. 15.
    Krek, A.: Simulation method to assess the value of dataset quality for the decision-making process. Ph.D., Dept. of Geoinformation, Technical University Vienna, (in progress).Google Scholar
  16. 16.
    Mark, D., et al.: Cognitive models of geographical space. International Journal of Geographical Information Science 13 (1999) 747–774.CrossRefGoogle Scholar
  17. 17.
    Neisser, U.: Cognition and Reality–Principles and Implications of Cognitive Psychology. Books in Psychology. Freeman, New York (1976).Google Scholar
  18. 18.
    Norman, D.: The Design of Everyday Things. Doubleday, New York (1988).Google Scholar
  19. 19.
    O’Hare, G.M.P. and N.R. Jennnings (eds.): Foundations of Distributed Artificial Intelligence. Sixth-Generation Computer Technology Series. John Wiley (1996).Google Scholar
  20. 20.
    O’Sullivan, D. and M. Haklay: Agent-based models and Individualism: Is the world agent-based? Environment and Planning A 32 (2000) 1409–1425.CrossRefGoogle Scholar
  21. 21.
    Peterson, J., et al.: Report on the functional programming language Haskell, Version 1.3 (1996).Google Scholar
  22. 22.
    Portugali, J.: Self-Organization, Cities, Cognitive Maps and Information Systems. In: S.C. Hirtle and A.U. Frank (eds.), Spatial Information Theory–A Theoretical Basis for GIS (Int. Conference COSIT’ 97), Springer-Verlag, Berlin Heidelberg (1997) 329–346.CrossRefGoogle Scholar
  23. 23.
    Raubal, M. and M. Egenhofer: Comparing the complexity of wayfinding tasks in built environments. Environment & Planning B 25 (1998) 895–913.CrossRefGoogle Scholar
  24. 24.
    Raubal, M. and M. Worboys: A Formal Model of the Process of Wayfinding in Built Environments. In: Spatial Information Theory–Cognitive and Computational Foundations of Geographic Information Science (Int. Conference COSIT’ 99), Stade, Germany. Springer-Verlag, Berlin Heidelberg (1999) Vol. 1661 381–399.CrossRefGoogle Scholar
  25. 25.
    Russell, S. and P. Norvig: Artificial Intelligence–A modern Approach. Prentice Hall International, Inc. (1995).Google Scholar
  26. 26.
    Searle, J.R.: The Construction of Social Reality. The Free Press, New York (1995).Google Scholar
  27. 27.
    Torrens, P.M.: Can geocomputation save urban simulation? Throw some agents into the mixture, simmer, and wait... Center for advanced spatial analysis working paper series 32 (2001).Google Scholar
  28. 28.
    Weiss, G. (ed.) Multiagent Systems–A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge, MA (1999).Google Scholar
  29. 29.
    Wooldridge, M.: Intelligent Agents. In: G. Weiss (ed.), Multiagent Systems–A Modern Approach to Distributed Artificial Intelligence, MIT Press, Cambridge, MA (1999) 27–77.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andrew U. Frank
    • 1
  • Steffen Bittner
    • 1
  • Martin Raubal
    • 1
  1. 1.Dept. of GeoinformationTechnical University ViennaViennaAustria

Personalised recommendations