A Geometric Theory of Vague Boundaries Based on Supervaluation

  • Lars Kulik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2205)


The representation of geographical objects with vague or fuzzy boundaries still poses a challenge to current geographical information systems. The paper presents a geometric account to deal with spatial vagueness. This approach is based on ideas of the theory of supervaluation. To capture vague spatial information current geographical information systems mainly employ fuzzy set theory and fuzzy logic. The proposed geometric theory is contrasted with fuzzy theories regarding the representation of vague spatial objects and the inferences that can be drawn about the objects. Opposed to fuzzy theories, the proposed theory does not rely on a numerical representation to model spatial vagueness, but is still compatible with it. Therefore, the approach is able to support spatial databases in qualitative spatial inferences.


Axiomatics Geometry Geography Spatial Reasoning Vagueness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burrough, P.A. (1996). Natural objects with indeterminate boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 3–28). London: Taylor & Francis.Google Scholar
  2. Clementini, E., di Felice, P. (1996). An algebraic model for spatial objects with indeterminate boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 155–169). London: Taylor & Francis.Google Scholar
  3. Cohn, A.G. (1997). Qualitative Spatial Representation and Reasoning Techniques. In G. Brewka, C. Habel & B. Nebel (Eds.), KI-97–Advances in Artificial Intelligence (pp. 1–30), Berlin: Springer.Google Scholar
  4. Cohn, A.G., Gotts, N.M. (1996a). The ‘egg-yolk’ representation of regions with indeterminate boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 171–187). London: Taylor & Francis.Google Scholar
  5. Cohn, A.G., Gotts, N.M. (1996b). Representing Spatial Vagueness: A Mereological Approach. In L.C. Aiello, J. Doyle & S. Shapiro (Eds.), Proceedings of the 5 th conference on principles of knowledge representation and reasoning, KR’ 96 (pp. 230–241). San Francisco: Morgan Kaufmann.Google Scholar
  6. Couclelis, H. (1996). A typology of geographic entities with ill-defined boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 45–55). London: Taylor & Francis.Google Scholar
  7. Egenhofer, M.J., Herring, J. (1991). Categorizing Binary Topological Relationships between Regions, Lines and Points in Geographic Databases. Technical report, Department of Surveying Engineering, University of Maine.Google Scholar
  8. Elkan, C. (1994). The paradoxical success of fuzzy logic. IEEE Expert, 9(4), 3–8. (Followed by responses and a reply.)CrossRefGoogle Scholar
  9. Erwig, M., Schneider, M. (1997). Vague Regions. In M. Scholl & A. Voisard (Eds.), 5 th Int. Symp. on Advances in Spatial Databases (pp. 298–320). Berlin: Springer.Google Scholar
  10. Eschenbach, Carola, Habel, C., Kulik, L. (1999). Representing simple trajectories as oriented curves. In A.N. Kumar & I. Russell (Eds.), FLAIRS-99, Proceedings of the 12 th International Florida AI Research Society Conference (pp. 431–436). Orlando, Florida.Google Scholar
  11. Fine, K. (1975). Vagueness, truth and logic. Synthese, 30, 265–300.zbMATHCrossRefGoogle Scholar
  12. Fisher, P. (2000). Sorites paradox and vague geographies, Fuzzy Sets and Systems, 113(1), 7–18.CrossRefGoogle Scholar
  13. Hadzilacos, T. (1996). On layer-based systems for undetermined boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 237–255). London: Taylor & Francis.Google Scholar
  14. Hájek, P. (1998). Metamathematics of Fuzzy Logic. Dordrecht: Kluwer.zbMATHGoogle Scholar
  15. Kamp, J.A.W. (1975). Two theories about adjectives. In E.L. Keenan (Ed.), Formal Semantics of Natural Language (pp. 123–155). Cambridge: Cambridge University Press.Google Scholar
  16. Keefe, R., Smith, P. (Eds.) (1997). Vagueness: A Reader. Cambridge, MA: MIT Press.Google Scholar
  17. Kulik, L., Klippel, A. (1999). Reasoning about cardinal directions using grids as qualitative geographic coordinates. In C. Freksa & D.M. Mark (Eds.), Spatial Information Theory (pp. 205–220). Berlin: Springer.Google Scholar
  18. Randell, D.A., Cui, Z., Cohn, A.G. (1992). A spatial logic based on regions and connection. In Proceedings 3 rd International Conference on Knowledge Representation and Reasoning (pp. 165–176). San Francisco: Morgan Kaufmann.Google Scholar
  19. Schneider, M. (1999). Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types. In R.H. Güting, D. Papadias, F., Lochovsky (Eds.), 6 th Int. Symp. on Advances in Spatial Databases (pp. 330–351). Berlin: Springer.Google Scholar
  20. Sharma, J., Flewelling, D., Egenhofer, M. (1994). A qualitative spatial reasoner. In Sixth International Symposium on Spatial Data Handling (pp. 665–681).Google Scholar
  21. Smith, B., Varzi, A. (1997). Fiat and Bona Fide Boundaries: Towards an Ontology of Spatially Extended Objects. In: S.C. Hirtle & A.U. Frank (Eds.), Spatial Information Theory: A Theoretical Basis for GIS (pp. 103–119). Berlin: Springer.CrossRefGoogle Scholar
  22. Tye, M. (1994). Sorites paradoxes and the semantics of vagueness. In J. Tomberlin (Ed.), Philosophical Perspectives: Logic and Language (pp. 189–206). Atascadero, CA: Ridgeview.Google Scholar
  23. Varzi, A. (1997). Boundaries, Continuity, and Contact, Noûs, 31(1), 26–58.MathSciNetGoogle Scholar
  24. Varzi, A. (2000). Vague Names for Sharp Objects. In L. Obrst & I. Mani (Eds.), Proceedings of the KR Workshop on Semantic Approximation, Granularity, and Vagueness (pp. 73–78), Breckenridge, CO: AAAI Press.Google Scholar
  25. Worboys, M.F. (1998). Computation with imprecise geospatial data, Computers, Environment and Urban Systems, 22(2), 85–106.CrossRefGoogle Scholar
  26. Zadeh, L. (1975). Fuzzy logic and approximate reasoning. Synthese, 30, 407–428.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Lars Kulik
    • 1
  1. 1.Department for InformaticsUniversity of HamburgHamburgGermany

Personalised recommendations