Advertisement

Double-Crossing: Decidability and Computational Complexity of a Qualitative Calculus for Navigation

  • Alexander Scivos
  • Bernhard Nebel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2205)

Abstract

The Double Cross calculus has been proposed for the purpose of navigation based on qualitative information about spatial configurations. Up until now, however, no results about algorithmic properties of this calculus are known. First, we explore the possibility of applying constraint propagation techniques to solve the reasoning problem in this calculus. For this purpose, we have to generalize the known techniques for binary relations because the Double Cross calculus is based on ternary relations. We will show, however, that such a generalization leads to problems. The Double Cross calculus is not closed under composition and permutation. Further, as we will show, there exists no finite refinement of the base relations with such a closure property. Finally, we show that determining satisfiability of constraint systems over Double Cross relations is NP-hard, even if only the base relations of the Double Cross calculus are used. On the positive side, however, we show that the reasoning problem is solvable in PSPACE.

Keywords

languages of spatial relations spatial and temporal reasoning incomplete or imprecise spatial knowledge qualitative spatial reasoning constraint propagation ternary relation systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–843, Nov. 1983.zbMATHCrossRefGoogle Scholar
  2. 2.
    M. J. Egenhofer. Reasoning about binary topological relations. In O. Günther and H.-J. Schek, editors, Proceedings of the Second Symposium on Large Spatial Databases, SSD’91, volume 525 of Lecture Notes in Computer Science, pages 143–160. Springer-Verlag, Berlin, Heidelberg, New York, 1991.Google Scholar
  3. 3.
    B. Faltings. Qualitative spatial reaoning using algebraic topology. In A. U. Frank and W. Kuhn, editors, Spatial Information Theory: a Basis for GIS, pages 17–30. Springer-Verlag, 1995.Google Scholar
  4. 4.
    A. Frank. Qualitative spatial reasoning with cardinal directions. In Proceedings of the Seventh Austrian Conference on Artificial Intelligence, Berlin, Heidelberg, New York, 1991. Springer-Verlag.Google Scholar
  5. 5.
    C. Freksa. Using orientation information for qualitative spatial reasoning. In A. U. Frank, I. Campari, and U. Formentini, editors, Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, pages 162–178. Springer-Verlag, Berlin, Heidelberg, New York, 1992.Google Scholar
  6. 6.
    C. Freksa and K. Zimmermann. On the utilization of spatial structures for cognitively plausible and efficient reasoning. In Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, pages 261–266, Chicago, IL, 1992. IEEE.Google Scholar
  7. 7.
    M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.zbMATHGoogle Scholar
  8. 8.
    M. C. Golumbic and R. Shamir. Complexity and algorithms for reasoning about time: A graph-theoretic approach. Journal of the Association for Computing Machinery, 40(5):1128–1133, Nov. 1993.MathSciNetGoogle Scholar
  9. 9.
    M. Grigni, D. Papadias, and C. Papadimitriou. Topological inference. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 901–906, Montreal, Canada, Aug. 1995. Morgan Kaufmann.Google Scholar
  10. 10.
    A. Isli and A. G. Cohn. A new approach to cyclic ordering of 2D orientations using ternary relation algebras. Artificial Intelligence, 122(1-2):137–187, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    B. J. Kuipers. Modelling spatial knowledge. Cognitive Science, 2:129–153, 1978.CrossRefGoogle Scholar
  12. 12.
    P. B. Ladkin and R. Maddux. On binary constraint problems. Journal of the Association for Computing Machinery, 41(3):435–469, May 1994.zbMATHMathSciNetGoogle Scholar
  13. 13.
    P. B. Ladkin and A. Reinefeld. A symbolic approach to interval constraint problems. In J. Calmet and J. A. Campbell, editors, Artificial Intelligence and Symbolic Mathematical Computing, volume 737 of Lecture Notes in Computer Science, pages 65–84. Springer-Verlag, Berlin, Heidelberg, New York, 1993.Google Scholar
  14. 14.
    L. Latecki and R. Röhrig. Orientation and qualitative angle for spatial reasoning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI-93), pages 1544–1549, Chambery, France, Aug. 1993. Morgan Kaufmann.Google Scholar
  15. 15.
    G. Ligozat. Reasoning about cardinal directions. Journal of Visual Languages and Computing, 9(1):23–44, 1998.CrossRefGoogle Scholar
  16. 16.
    A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.zbMATHCrossRefGoogle Scholar
  17. 17.
    U. Montanari. Networks of constraints: fundamental properties and applications to picture processing. Information Science, 7:95–132, 1974.CrossRefMathSciNetGoogle Scholar
  18. 18.
    B. Nebel. Computational properties of qualitative spatial reasoning: First results. In I. Wachsmuth, C.-R. Rollinger, and W. Brauer, editors, KI-95: Advances in Artificial Intelligence, pages 233–244, Bielefeld, Germany, 1995. Springer-Verlag.Google Scholar
  19. 19.
    B. Nebel. Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of using the ORD-Horn class. In Proceedings of the 12th European Conference on Artificial Intelligence (ECAI-96), pages 38–42, Budapest, Hungary, Aug. 1996. Wiley.Google Scholar
  20. 20.
    B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. Journal of the Association for Computing Machinery, 42(1):43–66, Jan. 1995.zbMATHMathSciNetGoogle Scholar
  21. 21.
    D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions and connection. In B. Nebel, W. Swartout, and C. Rich, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd International Conference (KR-92), pages 165–176, Cambridge, MA, Oct. 1992. Morgan Kaufmann.Google Scholar
  22. 22.
    J. Renegar. On the computational complexity and geometry of the first order theory of the reals. Part I–III. Journal of Symbolic Computation, 13(3):255–300, 301–328, 329–352, 1992.zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Renz and B. Nebel. Efficient methods for qualitative spatial reasoning. In Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-98), pages 562–566, Brighton, UK, Aug. 1998. Wiley.Google Scholar
  24. 24.
    J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the Region Connection Calculus. Artificial Intelligence, 108(1-2):69–123, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    A. Scivos. Einführung in eine Theorie der ternären RST-Kalküle für qualitatives räumliches Schlieβen. Diplomarbeit, Albert-Ludwigs-Universität Freiburg, Mathematische Fakultät, 2000.Google Scholar
  26. 26.
    M. B. Vilain and H. A. Kautz. Constraint propagation algorithms for temporal reasoning. In Proceedings of the 5th National Conference of the American Association for Artificial Intelligence (AAAI-86), pages 377–382, Philadelphia, PA, Aug. 1986.Google Scholar
  27. 27.
    M. B. Vilain, H. A. Kautz, and P. G. van Beek. Constraint propagation algorithms for temporal reasoning: A revised report. In D. S. Weld and J. de Kleer, editors, Readings in Qualitative Reasoning about Physical Systems, pages 373–381. Morgan Kaufmann, San Francisco, CA, 1989.Google Scholar
  28. 28.
    K. Zimmermann and C. Freksa. Qualitatives räumliches Schlieβen mit Wissen über Richtungen, Entfernungen und Pfade. Künstliche Intelligenz, 7(4):21–28, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alexander Scivos
    • 1
  • Bernhard Nebel
    • 1
  1. 1.Institut für InformatikUniversität FreiburgFreiburgGermany

Personalised recommendations