Evaluating the Usability of the Scale Metaphor for Querying Semantic Spaces

  • Sara Irina Fabrikant
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2205)


Information visualizations have become popular tools for extracting knowledge from large bodies of information. Very little is known on the usability of such ‘visual knowledge tools’ for information access. The goal of this paper is to show the usability of the spatial metaphor ‘scale’ to access a large semantic document space. An experiment was conducted to examine whether different user groups can associate graphical changes in resolution in spatialized views with changes of level of detail in an index hierarchy of a digital document collection. Test participants were asked to utilize zoom tools to explore a spatialized subset of the GeoRef database, an extensive collection of geology and earth sciences documents. The outcomes of the experiment suggest that people are able to associate graphical changes in resolution of spatialized views (zooms) with changes in levels of detail of a document collection (hierarchical order). These results are independent of user group membership, but for some displays it takes people longer to make a decision.


Spatialization scale usability semantic spaces spatial metaphors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings in Information Visualization. Using Vision to Think, Morgan Kaufmann, San Francisco, CA.Google Scholar
  2. Catarci, T. (2000). What’s New in Visual Query Systems? Proceedings, First International Conference on Geographic Information Science, Savannah, GA, Oct. 28–31, 2000. (
  3. Chen, C., Czerwinski, M., (Eds.) (2000). Special Issue on Empirical Evaluation of Information Visualisations. International Journal of Human Computer Studies, 53(5).Google Scholar
  4. Chen, C., Czerwinski, M., and Macredie R. (Eds.) (2000). Special Issue on Individual Differences in Virtual Environments. Journal of the American Society of Information Science, 51(6).Google Scholar
  5. Chen, C. and Yue, Y. (2000). Empirical Studies of Information Visualization: A Meta-Analysis. International Journal of Human-Computer Studies, 53: 851–866.zbMATHCrossRefGoogle Scholar
  6. Ekstrom, R. B., French, J. W., Harman, H. H., and Derman, D. (1976). Kit of Factor-Referenced Cognitive Tests. Princeton, NJ, Educational Testing Service.Google Scholar
  7. Fabrikant, S. I. and Buttenfield, B. P. (2001). Formalizing Semantic Spaces For Information Access. Annals of the Association of American Geographers, 91: 263–280.CrossRefGoogle Scholar
  8. Fabrikant, S. I. (2000). Spatial Metaphors for Browsing Large Data Archives. Unpublished Disseration, University of Colorado-Boulder, Department of Geography, Boulder, CO.Google Scholar
  9. Freundschuh, S. M. and Egenhofer, M. J. (1997). Human Conceptions of Spaces: Implications for GIS. Transactions in GIS, 2: 361–374.Google Scholar
  10. Golledge, R. G. (1995). Primitives of Spatial Knowledge. In Cognitive Aspects of Human-Computer Interaction for Geographic Information Systems, Nyerges, T. L., Mark, D. M., Laurini, R., and Egenhofer, M. J. (eds.), Dordrecht, Kluwer Academic: 29–44.Google Scholar
  11. Goodman, B. A. (1997). GeoRef Thesaurus. Alexandria, VA, American Geological Institute.Google Scholar
  12. Knoke, D. and Burke, P. J. (1980). Log-Linear Models. Sage University Paper Number 20. Newbury Park, CA, Sage Publications.Google Scholar
  13. Kraak, M. J. (1988). Computer-Assited Cartographical Three-Dimensional Imaging Techniques. Dissertation. Delft, The Netherlands, Delft University Press.Google Scholar
  14. Lakoff, G. (1987). Women, Fire, And Dangerous Things: What Categories Reveal About The Mind. Chicago, IL, University of Chicago Press.Google Scholar
  15. Lewis, C. (1991). Inner and Outer Theory in HCI. In Designing Interaction: Psychology at the Human-Computer Interaction Interface, Carroll, J. M. (ed.), Cambridge, MA, Cambridge University Press: 154–161.Google Scholar
  16. McNamara, T. P., Hardy, J. K., and Hirtle, S. C. (1989). Subjective Hierarchies in Spatial Memory. Journal of Experimental Psychology. Learning, Memory and Cognition, 15: 211–227.CrossRefGoogle Scholar
  17. Montello, D. R., Golledge, R. G. (1999). Scale and Detail in the Cognition of Geographic Information. Varenius Project Report, Specialist Meeting, May 14–16, 1998, Santa Barbara, CA.Google Scholar
  18. Morse, E., Lewis, M., and Olsen, K. A. (2000). Evaluating Visualizations: Using a Taxonomic Guide. International Journal of Human Computer Studies, 53: 637–662.zbMATHCrossRefGoogle Scholar
  19. Nielsen, J. (1993). Usability Engineering. Boston, MA, Academic Press.zbMATHGoogle Scholar
  20. Norman, D. A. (1993). Things That Make Us Smart. Defending Human Attributes in the Age of the Machine. Reading, MA, Addison-Wesley.Google Scholar
  21. Pirolli, P., Card, S. K., and Van Der Wege, M. M. (2000). Visual Information Foraging in a Focus + Context Visualization. Xerox PARC, Technical Report, IR-R-2000-14. URL: (Jan. 2001).
  22. Robertson, G. (1998). Keynote Address: Leveraging Human Capabilities in Information Perceptualizationd. IEEE Symposium on Information Visualization (InfoVis’ 98), Oct. 19–20, 1998, Research Triangle Park, North Carolina. URL: (Jan. 2001).
  23. Shneiderman, B. (1998). Designing the User Interface: Strategies for Effective Human-Computer Interaction. Reading, MA, Addison-Wesley.Google Scholar
  24. Stasko, J., Catrambone, R., Guzdial, M., and McDonald, K. (2000). An Evaluation of Space-Filling Information Visualizations for Depicting Hierarchical Structures. International Journal of Human-Computer Studies, 53: 663–694.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Sara Irina Fabrikant
    • 1
  1. 1.Department of GeographyUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations