A Virtual Test Bed in Support of Cognitively-Aware Geomatics Technologies

  • Geoffrey Edwards
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2205)


Current efforts concerned with research at the interface between cognitive science and geographic information science or geomatics is beginning to shift towards a larger focus on how the theory developed may be applied to concrete applications. In order to provide some quality control on the development and evaluation of cognitively-aware geomatics systems and technologies, this paper proposes to consolidate current theory into a virtual test bed. The virtual test bed requires an appropriate and adequate categorization of spatial cognitive behaviors, itself a non-trivial task. In addition, the test bed must be sufficiently general to evaluate different kinds of cognitively aware systems. In this paper, three characteristics of such systems are discussed – their plausibility, their compatibility and their scope. The relationships between these concepts and the Turing test are also explored. A tentative categorization scheme, based on information processing needs, is then proposed as an initial framework for developing a virtual test bed. Several design issues are also presented, and the paper finishes with the presentation of two case studies that illustrate how the test bed might be used.

Key words

Spatial cognition geomatics geographic information science computation evaluation technologies systems applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor, H. A., Tversky, B.: Descriptions and depictions of environments. Memory and Cognition 20 (1992) 483–496.Google Scholar
  2. 2.
    Frohn, R.C.: Remote sensing for landscape ecology: New metric indicators for monitoring, modeling, and assessment of ecosystems. Lewis Publishers (1998).Google Scholar
  3. 3.
    Turing, A.: Computing machinery and intelligence. Mind 59 (1950) 433–460.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Lakoff, G., Johnson, M.: Philosophy In The Flesh: The Embodied Mind and Its Challenge to Western Thought. Basic Books, New York (1999) 624 pp.Google Scholar
  5. 5.
    Edwards, G.: Cognitive Plausibility and Cognitive Compatibility in Spatial Computation. GIScience 2000, Savanah, Georgia (2000) (abstract only)Google Scholar
  6. 6.
    Richardson, J.T.E., Engle, R., Hasher, L., Logie, R.H., Stoltzfus, E.R., Zacks, R.T. (eds.): Working memory and human cognition. Oxford University Press, New York (1996).Google Scholar
  7. 7.
    Kuipers, B.: Reasoning with Qualitative Models. Artificial Intelligence 59 (1993) 125–132.CrossRefGoogle Scholar
  8. 8.
    Kuipers, B.: Modeling Spatial Knowledge, Cognitive Science 2 (1978) 129–153.CrossRefGoogle Scholar
  9. 9.
    Chown, E., Kaplan, S., Kortenkamp, D.: Prototypes, location, and associate networks (PLAN): Towards a unified theory of cognitive mapping. Cognitive Science 19 (1995) 1–51.CrossRefGoogle Scholar
  10. 10.
    Landau, B., Jackendorff, R.: What and Where in spatial language and spatial cognition, Behavioural and Brain Sciences 16 (1993) 121–141.Google Scholar
  11. 11.
    Marr, D.: Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman and Co, San Francisco (1982).Google Scholar
  12. 12.
    Talmy, L.: How Language Structures Space. In Spatial Orientation: Theory, Research and Application, Pick and Acredolo (eds.), Plenum Press, New York (1983) 225–282.Google Scholar
  13. 13.
    Herskovitz, A.: Language and Spatial Cognition, Cambridge University Press, Cambridge (1986).Google Scholar
  14. 14.
    Gryl, A.: Analyse et modélisation des processus discursifs mis en oeuvre dans descriptions d’itinéraires. Thèse de doctorat d’université en sciences cognitives, Université Paris-Sud, Orsay (1995).Google Scholar
  15. 15.
    Kettani, D., Moulin, B.: A spatial model based on the notions of spatial conceptual map and of object’s influence areas, in C. Freska, D. M. Mark (eds.), Spatial Information Theory, Cognitive and Computational Foundations of Geographic Information Systems, Proceedings of the International Conference COSIT’99, Springer-Verlag LNCS 1661 (1999) 401–415.CrossRefGoogle Scholar
  16. 16.
    Kettani, D.: Conception et implantation d’un modèle spatial qualitatif qui s’inspire du raisonnement spatial de l’être humain. Thèse de doctorat en informatique, Faculté de science et génie, Université Laval, Québec (1999) 208 p.Google Scholar
  17. 17.
    Edwards, G., Ligozat, G., Gryl, A., Fraczak, L., Moulin, B., Gold, C.M.: A Voronoí-based pivot representation of spatial concepts and its application to route descriptions expressed in natural language. Proceedings of the 7th International Conference SDH’96, Spatial Data Handling, M.J. Kraak, M. Molenaar (eds), Delft, The Netherlands (1996) 7B1–7B15.Google Scholar
  18. 18.
    Hirtle, S.C., Jonides, J.: Evidence of hierarchies in cognitive maps. Memory and Cognition 12 (1985) 181–189.Google Scholar
  19. 19.
    Tversky, B.: Distortions in Cognitive Maps. Geoforum 23 (1992) 131–138.CrossRefGoogle Scholar
  20. 20.
    Tversky, B.: Cognitive Maps, Cognitive Collages, and Spatial Mental Models, in Proceedings of COSIT’93, Campari and Frank (eds.), Lecture Notes in Computer Science 716 (1993) 14–24.Google Scholar
  21. 21.
    Parasuraman, R., (ed.): The Attentive Brain. MIT Press, Massachusetts (2000) 577 pp.Google Scholar
  22. 22.
    Kosslyn, S.M.: Image and brain. Cambridge, MIT Press, Massachusetts (1994).Google Scholar
  23. 23.
    Fontaine, S.: La cognition spatiale dans des environnements souterrains et urbains: Aides verbales et graphiques à la navigation. Ph.D. Thesis, Université Paris V, Paris (2000).Google Scholar
  24. 24.
    Fraczak, L.: Generating “mental maps” from route descriptions. In Proceedings of the IJCAI’ 95 Workshop on the Representation and Processing of Spatial Expressions, IJCAI’ 95, Montréal (1995) 75–82.Google Scholar
  25. 25.
    Edwards, G., Moulin, B.: Towards the Simulation of Spatial Mental Images Using the Voronoí Model. In Proceedings of the IJCAI’95 Workshop on the Representation and Processing of Spatial Expressions. Montréal (1995) 63–74.Google Scholar
  26. 26.
    Ligozat, G., Edwards, G.: Implicit Spatial Reference Systems using Proximity and Alignment Knowledge. Journal of Spatial Cognition and Computation (2001) submitted.Google Scholar
  27. 27.
    Marchand, P., Bédard, Y., Moulin, B., Edwards, G.: A Hypercube-based Implementation of Multi-dimensional Database Exploration and Analysis, IJGIS (2001) submitted.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Geoffrey Edwards
    • 1
    • 2
  1. 1.Canada Research Chair in Cognitive GeomaticsPavillon Casault, Université LavalSainte-Foy
  2. 2.Centre for Research in GeomaticsPavillon Casault, Université LavalSainte-Foy

Personalised recommendations